Thermal-FIST 1.5
Package for hadron resonance gas model applications
Loading...
Searching...
No Matches
PCE-Saha-LHC.cpp

An example of doing partial chemical equilibrium HRG model calculations at the LHC energies using Thermal-FIST

Calculates the evolution of the non-equilibrium chemical potentials (fugacities) and various particle ratios in the hadronic phase of 0-10% central 2.76 TeV Pb-Pb collisions at the LHC.

The calculations closely correspond to the results published in arXiv:1903.10024

Calculations start at Tch = 155 MeV and go down to a specified temperature (by default down to 70 MeV in steps of 1 MeV). The values of the chemical potentials, as well as of the system volume relative to the volume at the freeze-out, are written to a file ‘PCE.LHC.Parameters.dat’

The particle yield ratios at each temperature are written to a file ‘PCE.LHC.Ratios.dat’.

The abundances of light nuclei are calculated using the Saha equation.

The source code can be modified to obtain other particle yields, to change the particle list or or the HRG model type (e.g. an excluded volume HRG instead of an ideal HRG), or to explore other collision energies.

Usage:

./PCE-Saha-LHC
/*
* Thermal-FIST package
*
* Copyright (c) 2014-2020 Volodymyr Vovchenko
*
* GNU General Public License (GPLv3 or later)
*/
#include <string.h>
#include <fstream>
#include <iostream>
#include <iomanip>
#include <ctime>
#include <cstdio>
#include "HRGBase.h"
#include "HRGEV.h"
#include "HRGFit.h"
#include "HRGVDW.h"
#include "HRGPCE.h"
#include "ThermalFISTConfig.h"
using namespace std;
#ifdef ThermalFIST_USENAMESPACE
using namespace thermalfist;
#endif
// This is an example of doing PCE-HRG model calculations at the LHC energies using Thermal-FIST
// Usage: PCE-Saha-LHC
int main(int argc, char *argv[])
{
// The default particle list. As of version 1.3 this is PDG2020 list including light nuclei
ThermalParticleSystem parts(ThermalFIST_DEFAULT_LIST_FILE);
// To include excited nuclei use the following line instead
//ThermalParticleSystem parts(string(ThermalFIST_INPUT_FOLDER) + "/list/PDG2020/list-withexcitednuclei.dat");
// To reproduce arXiv:1903.10024 use the PDG2014 list
//ThermalParticleSystem TPS(string(ThermalFIST_INPUT_FOLDER) + "/list/PDG2014/list-withnuclei.dat");
// Use ideal HRG model
ThermalModelIdeal model(&parts);
// PCE-HRG model
ThermalModelPCE modelpce(&model);
modelpce.UseSahaForNuclei(true); // Light nuclei evaluated using the Saha equation (arXiv:1903.10024)
modelpce.FreezeLonglivedResonances(false); // All strongly decaying resonance are in partial equilibrium
// Chemical freeze-out conditions: 2.76 TeV 0-10% Pb-Pb collisions
ThermalModelParameters params_chemical_freezeout;
params_chemical_freezeout.T = 0.155; // Temperature in GeV
params_chemical_freezeout.muB = 0.;
params_chemical_freezeout.V = 4700.; // Volume in fm^3
model.SetParameters(params_chemical_freezeout);
// For finite baryon density: constrain muQ and muS
params_chemical_freezeout = model.Parameters();
model.FillChemicalPotentials(); // Fills chemical potentials for all species at Tch
// Set the chemical freeze-out as an "initial" condition for PCE
modelpce.SetChemicalFreezeout(params_chemical_freezeout);
// The list of chemical potentials for output, coded by the pdg code
vector<long long> pdgcodes_stable;
pdgcodes_stable.push_back(211); // pions (pi+)
pdgcodes_stable.push_back(321); // kaons (K+)
pdgcodes_stable.push_back(2212); // protons (p+)
pdgcodes_stable.push_back(3122); // Lambdas
pdgcodes_stable.push_back(3222); // Sigma+
pdgcodes_stable.push_back(3312); // Xi-
pdgcodes_stable.push_back(3334); // Omega
// The list of yield ratios to output
vector< pair<long long, long long> > ratios;
// First the nuclei
ratios.push_back(make_pair(1000010020, 2212)); // d/p
ratios.push_back(make_pair(1000020030, 2212)); // He3/p
ratios.push_back(make_pair(1000010030, 2212)); // H3/p
ratios.push_back(make_pair(1000020040, 2212)); // He4/p
ratios.push_back(make_pair(1010010030, 2212)); // Hypertriton/p
ratios.push_back(make_pair(1010010040, 2212)); // HyperHydrogen4/p
// Now the resonances
ratios.push_back(make_pair(313, -321)); // K^*0 / K^-
ratios.push_back(make_pair(113, 211)); // rho^0/ pi^+
ratios.push_back(make_pair(3124, 3122)); // \Lambda(1520)/\Lambda
ratios.push_back(make_pair(9010221, 211)); // f0(980) / pi^+
ratios.push_back(make_pair(2224, 2212)); // \Delta(1232)++/p
// Preparing the output files
// The file to output the parameters (volume, entropy, chemical potentials)
FILE* fout_params = fopen("PCE.LHC.Parameters.dat", "w");
fprintf(fout_params, "%15s %15s %15s ", "T[MeV]", "V/Vch", "S/Sch");
for (int i = 0; i < pdgcodes_stable.size(); ++i) {
fprintf(fout_params, "%15s ", ("mu_" + string(parts.ParticleByPDG(pdgcodes_stable[i]).Name())).c_str());
}
fprintf(fout_params, "\n");
// The file to output the yield ratios
FILE* fout_ratios = fopen("PCE.LHC.Ratios.dat", "w");
fprintf(fout_ratios, "%15s ", "T[MeV]");
for (int i = 0; i < ratios.size(); ++i) {
fprintf(fout_ratios, "%15s ", (parts.ParticleByPDG(ratios[i].first).Name() + "/" + parts.ParticleByPDG(ratios[i].second).Name()).c_str());
}
fprintf(fout_ratios, "\n");
// The temperature scan
double T0 = params_chemical_freezeout.T;
double dT = 0.001; // steps of 1 MeV
double Tmin = 0.070; // Down to 70 MeV
// Store the value of the total entropy at the chemical freeze-out
double entropy_chemical_freezeout = modelpce.ThermalModel()->EntropyDensity() * params_chemical_freezeout.V;
// Loop over temperatures
for (double T = T0; T >= Tmin - 1.e-9; T -= dT) {
printf("T = %lf MeV\n", T * 1.e3);
// Compute the PCE chemical potentials at a given temperature
modelpce.CalculatePCE(T);
// Output the parameters at the current temperature
fprintf(fout_params, "%15lf %15lf %15lf ",
T * 1.e3,
modelpce.ThermalModel()->Volume() / params_chemical_freezeout.V,
modelpce.ThermalModel()->EntropyDensity() * modelpce.ThermalModel()->Volume() / entropy_chemical_freezeout
);
for (int i = 0; i < pdgcodes_stable.size(); ++i) {
fprintf(fout_params, "%15lf ",
modelpce.ChemicalPotentials()[ parts.PdgToId(pdgcodes_stable[i]) ]
);
}
fprintf(fout_params, "\n");
// Output the yield ratios at the current temperature
fprintf(fout_ratios, "%15lf ", T * 1.e3);
for (int i = 0; i < ratios.size(); ++i) {
fprintf(fout_ratios, "%15E ",
modelpce.ThermalModel()->GetYield(ratios[i].first, Feeddown::Electromagnetic) /
modelpce.ThermalModel()->GetYield(ratios[i].second, Feeddown::Electromagnetic));
}
fprintf(fout_ratios, "\n");
}
fclose(fout_params);
fclose(fout_ratios);
return 0;
}
int main(int argc, char *argv[])
virtual void FillChemicalPotentials()
Sets the chemical potentials of all particles.
void ConstrainChemicalPotentials(bool resetInitialValues=true)
Constrains the chemical potentials by the conservation laws imposed.
virtual void SetParameters(const ThermalModelParameters &params)
The thermal parameters.
const ThermalModelParameters & Parameters() const
double Volume() const
System volume (fm )
Class implementing the Ideal HRG model.
Class implementing HRG in partial chemical equilibrium.
void SetChemicalFreezeout(const ThermalModelParameters &params, const std::vector< double > &ChemInit=std::vector< double >(0))
Sets the chemical freeze-out conditions to be used as an initial condition for PCE calculations.
void FreezeLonglivedResonances(bool flag)
Whether long-lived resonances yields should be frozen.
const std::vector< double > & ChemicalPotentials() const
void UseSahaForNuclei(bool flag)
Whether the nuclear abundances are evaluated through the Saha equation.
ThermalModelBase * ThermalModel() const
Pointer to the HRG model used in calculations.
virtual void CalculatePCE(double param, PCEMode mode=AtFixedTemperature)
Solves the equations of partial chemical equilibrium at a fixed temperature or a fixed volume.
const std::string & Name() const
Particle's name.
Class containing the particle list.
int PdgToId(long long pdgid) const
Transforms PDG ID to a 0-based particle id number.
const ThermalParticle & ParticleByPDG(long long pdgid) const
ThermalParticle object corresponding to particle species with a provided PDG ID.
The main namespace where all classes and functions of the Thermal-FIST library reside.
Definition CosmicEoS.h:9
@ Electromagnetic
Feeddown from strong and electromagnetic decays.
Structure containing all thermal parameters of the model.