Lattice-based QCD equation of state at finite baryon density: Cluster Expansion Model

Volodymyr Vovchenko

Goethe University Frankfurt & Frankfurt Institute for Advanced Studies

$$\frac{p(T,\mu_B)}{T^4} = p_0(T) - \frac{2}{27\pi^2} \frac{\hat{b}_1^2}{\hat{b}_2} \left\{ 4\pi^2 \left[\text{Li}_2(x_+) + \text{Li}_2(x_-) \right] + 3\left[\text{Li}_4(x_+) + \text{Li}_4(x_-) \right] \right\}$$

Based on 1708.02852 and 1711.01261 in collaboration with A. Pasztor, Z. Fodor, S.D. Katz, J. Steinheimer, O. Philipsen, H. Stoecker

Quark Matter 2018, Venice, Italy

May 16, 2018

QCD phase diagram: towards finite density

- QCD equation of state at $\mu_B = 0$ available from lattice QCD
- No direct LQCD simulations at finite μ_B but recently a lot of LQCD data which helps constrain phenomenological models

QCD thermodynamics with fugacity expansion

$$\frac{p(T,\mu_B)}{T^4} = \sum_{k=0}^{\infty} p_k(T) \cosh\left(\frac{k\,\mu_B}{T}\right) = \sum_{k=-\infty}^{\infty} \tilde{p}_{|k|}(T) \, e^{k\mu_B/T}$$

No sign problem on the lattice at imaginary $\mu_B \rightarrow i \tilde{\mu}_B$

Observables obtain trigonometric Fourier series form

Baryon density:
$$\frac{\rho_B(T, i\tilde{\mu}_B)}{T^3} = i \sum_{k=1}^{\infty} b_k(T) \sin\left(\frac{k\tilde{\mu}_B}{T}\right), \quad b_k(T) \equiv k p_k(T)$$

$$b_k(T) = \frac{2}{\pi T^4} \int_0^{\pi T} d\tilde{\mu}_B \left[\operatorname{Im} \rho_B(T, i\tilde{\mu}_B) \right] \sin(k \, \tilde{\mu}_B / T)$$

QCD thermodynamics with fugacity expansion

$$\frac{p(T,\mu_B)}{T^4} = \sum_{k=0}^{\infty} p_k(T) \cosh\left(\frac{k\,\mu_B}{T}\right) = \sum_{k=-\infty}^{\infty} \tilde{p}_{|k|}(T) \, e^{k\mu_B/T}$$

No sign problem on the lattice at imaginary $\mu_B \rightarrow i \tilde{\mu}_B$

Observables obtain trigonometric Fourier series form

Baryon density:
$$\frac{\rho_B(T, i\tilde{\mu}_B)}{T^3} = i \sum_{k=1}^{\infty} b_k(T) \sin\left(\frac{k\tilde{\mu}_B}{T}\right), \quad b_k(T) \equiv k \, p_k(T)$$
$$b_k(T) = \frac{2}{\pi \, T^4} \int_0^{\pi T} d\tilde{\mu}_B \left[\operatorname{Im} \rho_B(T, i\tilde{\mu}_B)\right] \sin(k \, \tilde{\mu}_B / T)$$

Ideal (Boltzmann) HRG:

$$rac{
ho_B}{T^3} = b_1(T) \, \sinh\left(rac{\mu_B}{T}
ight)$$

Massless quarks (Stefan-Boltzmann limit): $b_k^{SB} = \frac{(-1)^{k+1}}{k} \frac{4 \left[3 + 4 \left(\pi k\right)^2\right]}{27 \left(\pi k\right)^2}$

Lattice QCD results on Fourier coefficients

- Consistent with HRG at low temperatures
- Consistent with approach to the Stefan-Boltzmann limit
- b_2 visibly departs from zero above $T \sim 160 \text{ MeV}$

HRG with repulsive baryonic interactions

Repulsive interactions with excluded volume (EV) [Rischke et al., Z. Phys. C '91]

V.V., A. Pasztor, Z. Fodor, S.D. Katz, H. Stoecker, 1708.02852

- Non-zero $b_k(T)$ for $k \ge 2$ signal deviation from ideal HRG
- EV interactions between baryons ($b \approx 1 \text{ fm}^3$) reproduce lattice trend

Higher-order coefficients from lower ones

Feature of the EV-like models: temperature-independent ratios

$$\alpha_3 = \frac{b_1(T)}{[b_2(T)]^2} b_3(T), \qquad \alpha_4 = \frac{[b_1(T)]^2}{[b_2(T)]^3} b_4(T), \qquad \dots \qquad \alpha_k = \frac{[b_1(T)]^{k-2}}{[b_2(T)]^{k-1}} b_k(T)$$

Higher-order coefficients from lower ones

Feature of the EV-like models: temperature-independent ratios

Observation: α_3 and α_4 are *T*-independent in lattice data

Higher-order coefficients from lower ones

Feature of the EV-like models: temperature-independent ratios

Observation: α_3 and α_4 are *T*-independent in lattice data Ratios are consistent with Stefan-Boltzmann limit of massless quarks

Cluster Expansion Model — CEM

a model for QCD equation of state at finite baryon density

V. Vovchenko, J. Steinheimer, O. Philipsen, H. Stoecker, 1711.01261, work in progress

Cluster Expansion Model (CEM)

Model formulation:

• Fugacity expansion for baryon number density

$$\frac{\rho_B(T,\mu_B)}{T^3} = \chi_1^B(T,\mu_B) = \sum_{k=1}^{\infty} b_k(T) \sinh(k\mu_B/T)$$

- $b_1(T)$ and $b_2(T)$ are model input
- All higher order coefficients are predicted: $b_k(T) = \alpha_k^{SB} \frac{[b_2(T)]^{k-1}}{[b_1(T)]^{k-2}}$

Physical picture: Hadron gas with repulsion at moderate *T*, "weakly" interacting quarks and gluons at high *T*

Cluster Expansion Model (CEM)

Model formulation:

• Fugacity expansion for baryon number density

$$\frac{\rho_B(T,\mu_B)}{T^3} = \chi_1^B(T,\mu_B) = \sum_{k=1}^{\infty} b_k(T) \sinh(k\mu_B/T)$$

- $b_1(T)$ and $b_2(T)$ are model input
- All higher order coefficients are predicted: $b_k(T) = \alpha_k^{SB} \frac{[b_2(T)]^{k-1}}{[b_1(T)]^{k-2}}$

Physical picture: Hadron gas with repulsion at moderate *T*, "weakly" interacting quarks and gluons at high *T*

Resummed analytic form:

$$\frac{\rho_B(T,\mu_B)}{T^3} = -\frac{2}{27\pi^2} \frac{\hat{b}_1^2}{\hat{b}_2} \left\{ 4\pi^2 \left[\text{Li}_1(x_+) - \text{Li}_1(x_-) \right] + 3 \left[\text{Li}_3(x_+) - \text{Li}_3(x_-) \right] \right\}$$
$$\hat{b}_{1,2} = \frac{b_{1,2}(T)}{b_{1,2}^{\text{SB}}}, \quad x_{\pm} = -\frac{\hat{b}_2}{\hat{b}_1} e^{\pm \mu_B/T}, \quad \text{Li}_s(z) = \sum_{k=1}^{\infty} \frac{z^k}{k^s}$$
$$8/17$$

CEM: Baryon number susceptibility

Lattice data from 1112.4416 (Wuppertal-Budapest), 1701.04325 (HotQCD)

Model inputs used:

- CEM-LQCD: $b_1(T)$ and $b_2(T)$ from LQCD simulations at imaginary μ_B
- CEM-HRG: $b_1(T)$ and $b_2(T)$ from excluded-volume HRG

CEM: Higher-order susceptibilities

Lattice data on higher-order susceptibilities validate CEM

CEM: Higher-order susceptibilities

$$\chi_{k}^{B}(T,\mu_{B}) = -\frac{2}{27\pi^{2}}\frac{\hat{b}_{1}^{2}}{\hat{b}_{2}}\left\{4\pi^{2}\left[\operatorname{Li}_{2-k}(x_{+}) + (-1)^{k}\operatorname{Li}_{2-k}(x_{-})\right] + 3\left[\operatorname{Li}_{4-k}(x_{+}) + (-1)^{k}\operatorname{Li}_{4-k}(x_{-})\right]\right\}$$

To be verified by future lattice data

CEM: Higher-order susceptibilities

$$\chi_{k}^{B}(T,\mu_{B}) = -\frac{2}{27\pi^{2}}\frac{\hat{b}_{1}^{2}}{\hat{b}_{2}}\left\{4\pi^{2}\left[\operatorname{Li}_{2-k}(x_{+}) + (-1)^{k}\operatorname{Li}_{2-k}(x_{-})\right] + 3\left[\operatorname{Li}_{4-k}(x_{+}) + (-1)^{k}\operatorname{Li}_{4-k}(x_{-})\right]\right\}$$

To be verified by future lattice data

Taylor expansion of the QCD pressure:

$$\frac{p(T,\mu_B)}{T^4} = \frac{p(T,0)}{T^4} + \frac{\chi_2^B(T)}{2!}(\mu_B/T)^2 + \frac{\chi_4^B(T)}{4!}(\mu_B/T)^4 + \dots$$

Radius of convergence $r_{\mu/T}$ of the expansion is the distance to the nearest singularity of p/T^4 in the complex μ_B/T plane, which could point to the QCD critical point

Lattice QCD strategy: Estimate $r_{\mu/T}$ from few leading terms [M. D'Elia et al., 1611.08285; S. Datta et al., 1612.06673; A. Bazavov et al., 1701.04325] Taylor expansion of the QCD pressure:

$$\frac{p(T,\mu_B)}{T^4} = \frac{p(T,0)}{T^4} + \frac{\chi_2^B(T)}{2!}(\mu_B/T)^2 + \frac{\chi_4^B(T)}{4!}(\mu_B/T)^4 + \dots$$

Radius of convergence $r_{\mu/T}$ of the expansion is the distance to the nearest singularity of p/T^4 in the complex μ_B/T plane, which could point to the QCD critical point

Lattice QCD strategy: Estimate $r_{\mu/T}$ from few leading terms [M. D'Elia et al., 1611.08285; S. Datta et al., 1612.06673; A. Bazavov et al., 1701.04325]

CEM:
$$\chi_1^B \propto \text{Li}\left(-\frac{\hat{b}_2}{\hat{b}_1}e^{\mu_B/T}\right) \Rightarrow (\mu_B/T)_c = \pm \ln\left(\frac{\hat{b}_1}{\hat{b}_2}\right) \pm i\pi$$

Singularity in the *complex plane* \rightarrow ratio estimators *do not work*

CEM: Radius of convergence

Radius of convergence of Taylor expansion sees Roberge-Weiss transition?

- At $T > T_{RW}$ expected $\left[\frac{\mu_B}{T}\right]_c = \pm i\pi$ [Roberge, Weiss, NPB '86]
- Puts CEM in contrast to various critical point estimates

 $T_{RW} \sim 208 \text{ MeV}$ [C. Bonati et al., 1602.01426] 13/17

Extracting $b_1(T)$ and $b_2(T)$ from susceptibilities

CEM: All χ_k^B determined by b_1 and b_2 at a given temperature

Reverse prescription: Extract $b_1(T)$ and $b_2(T)$ from two independent (combinations of) χ_k^B , assuming that CEM is valid

Extracting $b_1(T)$ and $b_2(T)$ from susceptibilities

CEM: All χ_k^B determined by b_1 and b_2 at a given temperature

Reverse prescription: Extract $b_1(T)$ and $b_2(T)$ from two independent (combinations of) χ_k^B , assuming that CEM is valid

Example: $b_1(T)$, $b_2(T)$ from HotQCD data for χ_2^B and χ_4^B/χ_2^B at $\mu_B = 0$

14/17

Extracting $b_1(T)$ and $b_2(T)$ from susceptibilities

CEM: All χ_k^B determined by b_1 and b_2 at a given temperature

Reverse prescription: Extract $b_1(T)$ and $b_2(T)$ from two independent (combinations of) χ_k^B , assuming that CEM is valid

Implies accuracy of CEM and consistency between LQCD data of different groups 14/17

CEM: Observables at finite μ_B

- Non-monotonic μ_B dependence of χ_4^B/χ_2^B and χ_6^B/χ_2^B
- Ratios consistent with free Fermi gas in the limit of large μ_B
- $\chi_6^B/\chi_2^B \lesssim 0$ in the STAR-BES range

Integrating the baryon number density

$$\frac{\rho_B}{T^3} = -\frac{2}{27\pi^2} \frac{\hat{b}_1^2}{\hat{b}_2} \left\{ 4\pi^2 \left[\text{Li}_1(x_+) - \text{Li}_1(x_-) \right] + 3 \left[\text{Li}_3(x_+) - \text{Li}_3(x_-) \right] \right\}$$

one obtains the scaled pressure $p(T, \mu_B)/T^4$ in CEM

$$\frac{p(T,\mu_B)}{T^4} = p_0(T) - \frac{2}{27\pi^2} \frac{\hat{b}_1^2}{\hat{b}_2} \left\{ 4\pi^2 \left[\text{Li}_2(x_+) + \text{Li}_2(x_-) \right] + 3\left[\text{Li}_4(x_+) + \text{Li}_4(x_-) \right] \right\}$$

which provides the full equation of state within the model

Full model input:

- Fourier coefficients $b_1(T)$ and $b_2(T) \leftarrow LQCD$ at imaginary μ_B
- μ_B -independent part of pressure $p_0(T) \leftarrow LQCD$ at $\mu_B = 0$

Useful for hydro at finite baryon density

Summary

- Lattice QCD data at imaginary μ constrain phenomenological models
- Initial deviations from uncorrelated gas of hadrons can be understood in terms of repulsive baryonic interactions
- Cluster expansion model (CEM) combines hadron gas with deconfinement and is consistent with presently available lattice data, both at $\mu = 0$ and imaginary μ_B
- Radius of convergence of Taylor expansion at $\mu = 0$ is sensitive to the Roberge-Weiss transition in the complex μ_B/T plane

Summary

- Lattice QCD data at imaginary μ constrain phenomenological models
- Initial deviations from uncorrelated gas of hadrons can be understood in terms of repulsive baryonic interactions
- Cluster expansion model (CEM) combines hadron gas with deconfinement and is consistent with presently available lattice data, both at $\mu = 0$ and imaginary μ_B
- Radius of convergence of Taylor expansion at $\mu = 0$ is sensitive to the Roberge-Weiss transition in the complex μ_B/T plane

Thanks for your attention!

Backup slides

CEM and effective model

Recent CEM developments: [Almasi et al., 1805.04441]

Deviations from CEM ansatz when applied to effective QCD model with chiral criticality (PQM)

although model setup is not realistic compared to lattice ($T_c^{PQM} \sim 230$ MeV)

Deviations of high order Fourier coefficients or susceptibilities from CEM ansatz may signal chiral CP, if there is one

CEM and effective model

Recent CEM developments: [Almasi et al., 1805.04441]

Deviations from CEM ansatz when applied to effective QCD model with chiral criticality (PQM)

although model setup is not realistic compared to lattice ($T_c^{PQM} \sim 230$ MeV)

Deviations of high order Fourier coefficients or susceptibilities from CEM ansatz may signal chiral CP, if there is one

Expected asymptotics

• At low T/densities QCD \simeq ideal hadron resonance gas

$$\frac{p^{\text{hrg}}(T,\mu_B)}{T^4} = \frac{\phi_M(T)}{T^3} + 2\frac{\phi_B(T)}{T^3}\cosh\left(\frac{\mu_B}{T}\right),$$

$$\phi_B(T) = \sum_{i \in B} \int dm \,\rho_i(m) \frac{d_i \, m^2 \, T}{2\pi^2} \, K_2\left(\frac{m}{T}\right),$$

$$p_0^{hrg}(T) = \frac{\phi_M(T)}{T^3}, \quad p_1^{hrg}(T) = \frac{2\,\phi_B(T)}{T^3}, \quad p_k^{\text{hrg}}(T) \equiv 0, \, k \ge 2$$

- At high T QCD \simeq ideal gas of massless quarks and gluons

$$\frac{p^{\text{\tiny SB}}(T,\mu_B)}{T^4} = \frac{8\pi^2}{45} + \sum_{f=u,d,s} \left[\frac{7\pi^2}{60} + \frac{1}{2} \left(\frac{\mu_B}{3T} \right)^2 + \frac{1}{4\pi^2} \left(\frac{\mu_B}{3T} \right)^4 \right],$$
$$p^{\text{\tiny SB}}_0 = \frac{64\pi^2}{135}, \quad p^{\text{\tiny SB}}_k = \frac{(-1)^{k+1}}{k^2} \frac{4\left[3 + 4\left(\pi k\right)^2\right]}{27\left(\pi k\right)^2}, \quad b^{\text{\tiny SB}}_k = k \, p^{\text{\tiny SB}}_k.$$

Lattice data explore intermediate, transition region 130 < T < 230 MeV

*In this study we assume that $\mu_S = \mu_Q = 0$

Radius of convergence: Structure of Taylor coefficients

Ratio estimator works when coefficients have regular asymptotic structure: they either share the same sign or they alternate in sign

Equivalently: Limiting singularity must be at a real $(\mu_B/T)^2$ value

Negative coefficients appear starting from χ_8^B

Radius of convergence: Domb-Sykes plot

Domb-Sykes plot: $1/r_n^2$ vs 1/n, linear extrapolation to 1/n = 0 yields $r_{\mu/T}$ CEM-LQCD @ T = 160 MeV

Radius of convergence: Mercer-Roberts estimator

A more involved Mercer-Roberts estimator:

Taylor expansions for p/T^4 , χ_2^B , and χ_4^B all point to the same $\lim_{n \to \infty} r_n^{-2} \simeq 0.064 \quad \Rightarrow \quad r_{\mu/T} \simeq 3.95 \text{ at } T = 160 \text{ MeV}$

1/n

16/23

0.05

CEM: Baryon number fluctuations

Baryon number susceptibilities at $\mu_B = 0$: $\chi^B_{2n}(T) \equiv \left. \frac{\partial^{2n}(p/T^4)}{\partial (\mu_B/T)^{2n}} \right|_{\mu_B=0} = \sum_{k=1}^{\infty} \, k^{2n-1} \, b_k(T) \simeq \sum_{k=1}^{k_{\text{max}}} \, k^{2n-1} \, b_k(T).$ CEM-LQCD: $b_1(T)$ and $b_2(T)$ taken from LQCD simulations at imaginary μ_B χ_2^B 0.35 CEM-LQCD 0.30 $k_{max} = 2$ 0.25 0.20 0.15 0.10 0.05 $\mu_{\rm B}$ = 0 0.00 ∟ 100 140 180 200 120 160 220 240 T [MeV]