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Particle production at LHC and statistical model
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Hadron resonance gas (HRG) at the chemical freeze-out:
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Fair description of central Pb-Pb collisions = equilibrated matter formed?
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Particle production at the LHC
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Canonical statistical model (CSM)

Grand-canonical approach: yield ratios N; /N; volume-independent, but

conserved charges not conserved exactly. Canonical treatment of

conservation laws important for small reaction volumes
[Rafelski, Danos, et al., PLB '80; Hagedorn, Redlich, ZPC ‘85]
Canonical partition function:

2(B.Q.5) /dcbs / doq / dds i (Bop+Qoq+Sés) exp szl el (Bj$B+Qj$Q+5j$s)

J

2 : Z(B—-B;,Q—Q;,S—Y5))
1 _ _m T primyce J° prim, gce
z; = V¢ /dmpj(m) dj—27r2 Ko(m/T) (N7) Z(B.Q.9) (N;7)
[Becattini et al., ZPC ‘95, ZPC ‘97] /

~ 1 at large volume (GCE), <1 for smaller volumes;
stronger effect for multi-charged particles;
neutral particles unaffected

Can multiplicity dependence be understood as a canonical suppression?
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CSM at LHC: strangeness-canonical ensemble
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e Strangeness-canonical
picture: S is canonical,

B & Q grand-canonical
[Vislavicius, Kalweit, 1610.03001]

e Describes trend for most
yield ratios, but not ¢

e What s the role of
baryon and electric
charge conservation?
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When is the canonical treatment necessary?

Normally, when the total number of particles carrying a conserved charge
is smaller or of the order of unity

The canonical treatment is often restricted to strangeness only (SCE)
[STAR collaboration, 1701.07065; ALICE collaboration, 1807.11321]
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e Strangeness conservation is most important at low energies (HADES, CBM)
e Small systems at RHIC and LHC: exact baryon conservation at least as
important as strangeness 6/19



CSM in Thermal-FIST

The Thermal-FIST package is employed in the present analysis
V.V., H. Stoecker, arXiv:1902.05249

open source: https://github.com/vivovch/Thermal-FIST

Canonical Statistical Model implementation in Thermal-FIST:

] ) model .ConserveBaryonCharge (true) ;
e Selective canonical treatment of charges —— model.conserveElectriccharge (false) ;

° Quantum statistics ~ model .ConserveStrangeness (true) ;

e Supports |Bj| > 1 (light nuclei)
e Particle number fluctuations and correlations
see also talk of A. Motornenko, Thursday 17:05
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https://github.com/vlvovch/Thermal-FIST
https://arxiv.org/abs/1901.05249

CSM at LHC: correlation volume dependence %‘L

Canonical statistical model: T = 155 MeV, V. — canonical volume, selective
(grand-)canonical treatment of B, Q, S
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CSM at LHC: vyield ratios to pions
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V. dependence of yield ratios to pions
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Connecting CSM to data

Enforce local exact conservation of charges, B =0 =5 =0, ina
correlation volume V. around midrapidity

In general, Vo = dV /dy

Causality argument: exact conservation across a few units of rapidity?
[Castorina, Satz, 1310.6932]

“Vanilla” CSM:
e T =155 MaeV for all multiplicities

 Multiplicity dependence of yield ratios driven by canonical
suppression only

e Vo =kdV/dy, where k varied to establish systematics
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“Vanilla”

CSM at LHC: comparison with data
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“Vanilla” CSM at LHC: light nuclei
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[V.V., B. Doenigus, H. Stoecker, 1808.05245]

CSM qualitatively captures the behavior seen in the data

* Data prefers V¢ > dV /dy and/or Ty, > Tppipp
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“Vanilla” CSM at LHC: summary %“

e The CSM captures fairly well multiplicity dependence of hyperon-
to-pion and nuclei-to-proton ratios

e Trend in K/m captured, but the data are significantly overshooted

e Some tension with the p/m data, which shows no clear evidence
for canonical suppression

e Behavior of ¢/ in the model is opposite to the behavior in the
data. Unless production mechanism of ¢ is separate from the rest

of hadrons, this invalidates “Vanilla” CSM for p-p and p-Pb
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Full CSM &

Allow variation of T with multiplicity

e Allow incomplete chemical equilibration of strangeness (as suggested
by the behavior of ¢): Nhrg Vs )|Sl|Nhrg

|s;| - strange quark content

Ve = 3dV /dy + deviations

T, vs, dV /dy fitted to data at each centrality

Data: m, K, KOS, o,p,\E Qinp-p7TeV, p-Pb 5.02 TeV, Pb-Pb 2.76 TeV
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Full CSM &

Allow variation of T with multiplicity

e Allow incomplete chemical equilibration of strangeness (as suggested
by the behavior of ¢): Nhrg Vs )|Sl|Nhrg

|s;| - strange quark content

Ve = 3dV /dy + deviations

T, vs, dV /dy fitted to data at each centrality

Data: m, K, KOS, o,p,\E Qinp-p7TeV, p-Pb 5.02 TeV, Pb-Pb 2.76 TeV

A similar analysis recently presented in [Sharma et al., 1811.00399], with two
important differences:

* There ¢ excluded from analysis, here it is included

e There V., = dV /dy strictly enforced, here not
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Full CSM: Extracted parameters
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CSM at LHC: data description
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CSM at LHC: remarks -

Remarks:

Canonical model preferred over GCE in p-p, not in p-Pb and Pb-Pb. Apparent
reasons are {)’s, which are measured with better precision in p-p, and the
fact that canonical suppression is partially manifest in the GCE through
smaller values of y5. New/better measurements of 2’s will be very useful.

Ve = 3dV /dy found to be optimal. For V. = dV /dy CE effects are too
strong and in bad agreement with p-p and p-Pb data

T decreases with multiplicity in CSM, from ~175 MeV for the lowest
multiplicities in p-p to ~155 MeV for the highest multiplicities in Pb-Pb.
Ys increases with multiplicity, saturates at y¢ = 1 at dN,,/dn = 100

Canonical effects negligible above dN,;, /dn =~ 50 — effective
thermodynamic limit

Energy-dependent Breit-Wigner widths used. If zero widths used instead,
p/m pushed up by ~15%, further away from the data at all multiplicities. 17/19



CSM at LHC: model accuracy
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Relative accuracy of CSM with ys is ~15% for all multiplicity bins 18/19



Summary

e Exact conservation of baryon number at least as important as
strangeness in the canonical picture at the LHC. Strangeness-
canonical ensemble only appropriate for multistrange hyperons.

* The “vanilla” CSM captures multiplicity dependence of hyperons
and light nuclei, but goes the opposite way when applied to ¢ /7.

 CSM with Y5 < 1 and multiplicity-dependent T describes hadron
vield data on a 15% level across all multiplicities considered

e Canonical effects irrelevant above dN_;, /dn =~ 50
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Summary

e Exact conservation of baryon number at least as important as
strangeness in the canonical picture at the LHC. Strangeness-
canonical ensemble only appropriate for multistrange hyperons.

* The “vanilla” CSM captures multiplicity dependence of hyperons
and light nuclei, but goes the opposite way when applied to ¢ /7.

 CSM with Y5 < 1 and multiplicity-dependent T describes hadron
vield data on a 15% level across all multiplicities considered

e Canonical effects irrelevant above dN_;, /dn =~ 50

Thanks for your attention!
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