Thermal model fits: an overview

Volodymyr Vovchenko

Goethe University Frankfurt & Frankfurt Institute for Advanced Studies

Light up 2018 — An ALICE and theory workshop, CERN

June 14, 2018

The conventional picture

Thermal fits map heavy-ion collisions to the QCD phase diagram

$$N_i^{\text{mod}} = N_i^{\text{hrg}} + \sum_j BR(j \to i) N_j^{\text{hrg}}, \quad N_i^{\text{hrg}} = V \frac{d_i m_i^2 T}{2\pi^2} K_2\left(\frac{m_i}{T}\right) e^{\frac{\mu_i}{T}}$$

Fits minimize

$$\chi^2 = \sum_i \frac{(N_i^{\text{mod}} - N_i^{\text{exp}})^2}{(\sigma_i^{\text{exp}})^2}$$

Conventional picture based on chemical equilibrium (ideal) HRG model fits

Many aspects of the thermal fits

Alternative/extended scenarios:

- chemical non-equilibrium (γ_a , γ_s)
- hadronic phase influence
- flavor hierarchy at freeze-out
- light nuclei

Systematic uncertainties in the HRG model:

- hadron spectrum and decay channels
- treatment of finite resonance widths
- excluded volume/van der Waals interactions

Description of small systems:

• exact conservation of conserved charges (canonical ensemble)

Commonly used tools for thermal fits

1) SHARE 3 [G. Torrieri, J. Rafelski, M. Petran, et al.] *Fortran/C++.* Chemical (non-)equilibrium, fluctuations, charm, nuclei open source: http://www.physics.arizona.edu/~gtshare/SHARE/share.html

2) THERMUS 4 [S. Wheaton, J. Cleymans, B. Hippolyte, et al.]
 C++/ROOT. Canonical ensemble, EV corrections, charm, nuclei
 open source: https://github.com/thermus-project/THERMUS

- 3) GSI-Heidelberg code [A. Andronic et al.] not open source
- 4) Florence code [F. Becattini et al.] not open source

Commonly used tools for thermal fits

1) SHARE 3 [G. Torrieri, J. Rafelski, M. Petran, et al.] *Fortran/C++*. Chemical (non-)equilibrium, fluctuations, charm, nuclei open source: http://www.physics.arizona.edu/~gtshare/SHARE/share.html

2) THERMUS 4 [S. Wheaton, J. Cleymans, B. Hippolyte, et al.]
 C++/ROOT. Canonical ensemble, EV corrections, charm, nuclei
 open source: https://github.com/thermus-project/THERMUS

- 3) GSI-Heidelberg code [A. Andronic et al.] not open source
- 4) Florence code [F. Becattini et al.] not open source

New development:

Thermal-FIST v0.5 (or simply "The FIST") [V.V., H. Stoecker]

C++. Chemical (non-)equilibrium, EV/vdW corrections, Monte Carlo, (higher-order) fluctuations, canonical ensemble, combinations of effects **open source:** https://github.com/vlvovch/Thermal-FIST

Thermal-FIST

Graphical user interface for general-purpose thermal fits and more

Thermal-FIST 0.5 П \sim Particle list file: C:/Programs/ThermalFIST/input/list/PDG2014/list-withnuclei.dat Load particle list... Load decays... Thermal fits Thermal model Event generator Data to fit: HRG Model: Ensemble: Exp. value Exp. error Model value Ideal O Diagonal EV O Crossterms EV O QvdW Name Fit? Deviation Data/Model \checkmark 669.5 48 590.628 1.134 ± 0.081 S -1.64318 1 pi+ Statistics: \checkmark 668 47 590.729 1.131 ± 0.080 S 2 pi--1.64407 0.962 ± 0.077 S 3 K+ \checkmark 100 8 103.921 0.490177 Excluded volume/van der Waals: \checkmark 99.5 8.5 103.751 0.500148 0.959 ± 0.082 S 4 K-Radius (fm): 0.30 🗘 💿 Same for all 🔿 Bag-like 🔿 Point-like mesons 🔿 Custom... 5 \checkmark 31.5 2.5 38,6826 2.87304 0.814 ± 0.065 S p Parameters: 30.5 2.5 38.2713 3.10853 0.797 ± 0.065 S 6 anti-p 🗧 🗹 Fit T (MeV): 100.00 T_{min} (MeV): 20.00 T_{max} (MeV): 500.00 > 🛊 μB_{max} (MeV): 950.00 🗘 🗹 Fit ↓ µB_{min} (MeV): 0.00 µB (MeV): 500.00 Add guantity to fit... Remove selected guantity from fit Load data from file... Save data to file.. 🗘 🗌 Fit 1.00000 γq_{min}: 0.00000 γq_{max}: 5.00000 γq: Extracted parameters: ¢γS_{min}: ¢ γS_{max}: 🗘 🗌 Fit γS: 1.00000 0.00000 5.00000 Parameter Value Error 🗘 🗹 Fit R_{min} (fm): Rmax (fm): R (fm): 8.00000 0.00000 25.00000 T (MeV) 154.828 1.33215 Q/B ratio: 0.400 📮 🗹 Constrain µQ 🗹 Constrain µS **B:** 2 🗘 S: 0 ‡ Q: 2 µB (MeV) 0.857744 4.714 Finite resonance width 🗌 Renormalize branching ratios 🖂 Fit Str.-Can. radius γq 1 ---Perform fit Write to file... 1 γs = 9654.09 S/Nb EV/V = 0 R (fm) 10.2857 0.285232 Q/B = 0.4 S/ISI = -1.86527e-17 chi2/ndf 41.8809/19 C/ICI = nan chi2/ndf 2.20426 chi2/ndf = 41.8809/19 = 2.20426 Show calculation results... Chi2 profile...

© 2014-2018 Volodymyr Vovchenko

Standard picture for Pb+Pb @ 2.76 TeV

ALICE collaboration (SQM 2015)

Similar results with *Thermal-FIST* and *Florence codes* [Becattini et al., 1605.09694] Consistent picture between codes for chem. equilibrium ideal HRG

Alternative/extended scenarios

Chemical non-equilibrium model

In chemical non-equilibrium scenario $N_i^{\text{hrg}} \propto (\gamma_q)^{|q_i|} (\gamma_s)^{|s_i|}$

E.g. hadronization of chem. non-eq. supercooled QGP [Letessier, Rafelski, '99]

- smaller reduced χ^2 compared to chem. equilibrium scenario
- describes p_{T} -spectra of many hadrons [V. Begun et al., 1312.1487, 1405.7252]
- $\gamma_q = 1.63 \Rightarrow \mu_\pi \approx 135 \ MeV \approx m_\pi \Rightarrow \text{ pion BEC? [V. Begun et al., 1503.04040]}$
- However, $\gamma_q \approx \gamma_s \approx 1$ when light nuclei included in fit [M. Floris, 1408.6403] 8/26

Chemical non-equilibrium model

In chemical non-equilibrium scenario $N_i^{\text{hrg}} \propto (\gamma_q)^{|q_i|} (\gamma_s)^{|s_i|}$

E.g. hadronization of chem. non-eq. supercooled QGP [Letessier, Rafelski, '99]

- smaller reduced χ^2 compared to chem. equilibrium scenario
- describes p_{T} -spectra of many hadrons [V. Begun et al., 1312.1487, 1405.7252]
- $\gamma_q = 1.63 \Rightarrow \mu_\pi \approx 135 \ MeV \approx m_\pi \Rightarrow \text{ pion BEC? [V. Begun et al., 1503.04040]}$
- However, $\gamma_q \approx \gamma_s \approx 1$ when light nuclei included in fit [M. Floris, 1408.6403] 8/26

Influence of the hadronic phase

Modification of hadron yields in non-equilibrium hadronic phase

 $B\overline{B}$ annihilation reduces (anti)proton yields [Steinheimer et al., 1203.5302]

- somewhat better χ^2 and increase in T_{ch} by 10-15 MeV
- no backreaction, e.g. $5M \rightarrow B\overline{B}$, in UrQMD. What is its role?

Flavor hierarchy at freeze-out

- higher $T_{\rm f}$ for strange particles than for non-strange
- effect may disappear if more strange baryons included [Bazavov et al., 1404.6511, S. Chatterjee, 1708.08152]

10/26

Flavor hierarchy in hadron sizes

Alternative: Flavor hierarchy in hadron sizes [P. Alba et al., 1606.06542]

 $v_i \propto m_i$ for non-strange, $v_i \propto m_i^{-1}$ for strange, excluded-volume HRG

Flavor hierarchy in hadron sizes

Alternative: Flavor hierarchy in hadron sizes [P. Alba et al., 1606.06542] $v_i \propto m_i$ for non-strange, $v_i \propto m_i^{-1}$ for strange, excluded-volume HRG

Flavor hierarchy in hadron sizes

Alternative: Flavor hierarchy in hadron sizes [P. Alba et al., 1606.06542] $v_i \propto m_i$ for non-strange, $v_i \propto m_i^{-1}$ for strange, excluded-volume HRG

- Significant improvement in fit quality across \sqrt{s} and centralities
- Reflects systematics in data, exact physical reasons to be clarified

Considering the ALICE 2.76 TeV Pb+Pb 0-10% data in ideal HRG model...

1) Fit of mesons + baryons + nuclei: $T_{ch} = 155 \pm 2$ MeV, $\chi^2/N_{dof} = 41.9/20$

2) Fit of mesons + baryons:

$$T_{ch} = 155 \pm 2$$
 MeV, $\chi^2/N_{dof} = 36.7/12$

Considering the ALICE 2.76 TeV Pb+Pb 0-10% data in ideal HRG model...

1) Fit of mesons + baryons + nuclei: $T_{ch} = 155 \pm 2$ MeV, $\chi^2/N_{dof} = 41.9/20$

2) Fit of mesons + baryons: $T_{ch} = 155 \pm 2$ MeV, $\chi^2/N_{dof} = 36.7/12$

3) Fit of mesons $(\pi^{\pm}, K^{\pm}, K_0^S, \phi)$: $T_{ch} = 141 \pm 9$ MeV, $\chi^2/N_{dof} = 3.7/4$

Considering the ALICE 2.76 TeV Pb+Pb 0-10% data in ideal HRG model...

1) Fit of mesons + baryons + nuclei: $T_{ch} = 155 \pm 2$ MeV, $\chi^2/N_{dof} = 41.9/20$

2) Fit of mesons + baryons: $T_{ch} = 155 \pm 2$ MeV, $\chi^2/N_{dof} = 36.7/12$

3) Fit of mesons $(\pi^{\pm}, K^{\pm}, K_0^S, \phi)$: $T_{ch} = 141 \pm 9$ MeV, $\chi^2/N_{dof} = 3.7/4$

4) Fit of baryons (p, Λ, Ξ, Ω): $T_{ch} = 192 \pm 14$ MeV, $\chi^2/N_{dof} = 15.3/6$

Considering the ALICE 2.76 TeV Pb+Pb 0-10% data in ideal HRG model...

1) Fit of mesons + baryons + nuclei: $T_{ch} = 155 \pm 2$ MeV, $\chi^2/N_{dof} = 41.9/20$

2) Fit of mesons + baryons: $T_{ch} = 155 \pm 2$ MeV, $\chi^2/N_{dof} = 36.7/12$

3) Fit of mesons $(\pi^{\pm}, K^{\pm}, K_0^S, \phi)$: $T_{ch} = \mathbf{141} \pm 9$ MeV, $\chi^2/N_{dof} = \mathbf{3.7/4}$

4) Fit of baryons $(p, \Lambda, \Xi, \Omega)$: $T_{ch} = 192 \pm 14$ MeV, $\chi^2/N_{dof} = 15.3/6$

5) Fit of nuclei (d,³He,³_AH,⁴He): $T_{ch} = 161 \pm 4$ MeV, $\chi^2/N_{dof} = 2.4/6$ Similar results at other centralities

Rather different fit temperatures in different baryon number sectors... More tension in the baryonic sector

Systematic uncertainties in the HRG model

Input hadron list and decay channels

- High-mass resonances and their decay channels poorly known
- Evidence for missing strange baryons for lattice QCD [A. Bazavov et al., 1404.6511; P. Alba et al., 1702.0113; S. Chatterjee, 1708.08152]

Modeling finite resonance widths

• Zero-width approx., energy (in)dependent Breit-Wigner, phase shifts

Excluded volume/van der Waals interaction effects

• Thermal fits affected when EV parameters differ between hadrons [V.V., H. Stoecker, 1512.08046, 1606.06218]

In-medium hadron masses

- In-medium masses due to interactions/chiral symmetry restoration
 [D. Zschiesche et al., nucl-th/0209022; G. Aarts et al., 1703.09246]
- Needs reconciliation with vacuum masses actually measured

Modeling finite resonance widths

$$n_i(T,\mu;m_i) \rightarrow \int_{m_i^{\min}}^{m_i^{\max}} dm \, \rho_i(m) \, n_i(T,\mu;m)$$

- 1) Zero-width approximation $\rho_i(m) = \delta(m m_i)$ Simplest possibility, used commonly in LQCD comparisons
- 2) Breit-Wigner (BW) in $\pm 2\Gamma_i$ interval $\rho_i(m) = A_i \frac{2 m m_i \Gamma_i}{(m^2 m_i^2)^2 + m_i^2 \Gamma_i^2}$ Popular choice in thermal fits (THERMUS, Florence code, Thermal-FIST) Could be overestimating density near threshold
- 3) Energy-dependent Breit-Wigner (eBW) $\Gamma_i(m) = \sum_i \Gamma_{i \to j}(m)$

$$\Gamma_{i \to j}(m) = b_{i \to j} \Gamma_i \left[1 - \left(\frac{m_{i \to j}^{\text{thr}}}{m} \right)^2 \right]^{I_{ij}+1/2}$$

+ *m*-dependent decay feeddown

$$\mathsf{N}_{i}^{\mathrm{tot}} = \mathsf{N}_{i}^{\mathrm{hrg}} + \sum_{j \in \mathsf{pdg}} \int dm \, \mathsf{BR}(j \to i; m) \, \rho_{j}(m) \, \frac{d\mathsf{N}_{j}^{\mathrm{hrg}}}{dm}$$
14/26

Modeling widths: effect on thermal fits

Excluded volume corrections

Notion that hadrons have finite eigenvolume suggested a while ago [R. Hagedorn, J. Rafelski, PLB '80]

Excluded volume model: $V \rightarrow V - bN \Rightarrow$ repulsive interactions [D. Rischke et al., Z. Phys. C '91]

Whether EV corrections are needed at all has been debated...

Recent lattice data favor EV-like effects in baryonic interactions

but not much info regarding (non-)existence of EV effects for mesons 16/26

"One size fits them all" scenario

EV model: $N_i \propto \exp\left(-\frac{v_i}{T}\right) \leftarrow \text{larger hadrons suppressed}$ EV effects cancel out in hadron yield ratios if $v_i \equiv v$, volume renormalized

"One size fits them all" scenario

ALI-PREL-148739

F. Bellini (for ALICE), QM2018

Another extreme: bag model scaling

Bag model: $V_i \propto m_i$

[Chodos et al., PRD '74; Kapusta et al., NPA '83, PRC '15]

Extraction of T and μ can be quite sensitive w.r.t EV corrections, but entropy per baryon, S/A, is a robust observable **Two-component model:** $r_M = 0$ fm, $r_B = 0.3$ fm

[Andronic et al., 1201.0693]

Origin of the two minima

Non-monotonic behavior when $v_{\pi} < v_{p}$ which yields two solutions

Light nuclei and EV corrections

Could light nuclei stabilize the fit? Let us add deuteron into the fit

Small systems

thermal model applied also for small systems, even for elementary reactions like e^+e^- , pp, $p\bar{p}$ [Becattini et al., ZPC '95, ZPC '97]

canonical treatment of (some) conserved charges needed when the reaction volume is small, suppresses yields [Rafelski, Danos, et al., PLB '80]

Small systems at LHC

Multiplicity dependence within strangeness-canonical ensemble

general trend for most hadrons captured by SCE

- notable exception: ϕ
- problems with ϕ in small systems were pointed out before

[Becattini et al., hep-ph/0511092]

23/26

NA61/SHINE: yields in inelastic p+p collisions at $\sqrt{s_{NN}} = 6.6 - 17.3$ GeV [NA61/SHINE collaboration, 1310.2417, 1705.02467, 1711.09633]

collaboration reports 4π yields => natural to apply canonical ensemble

- CE fails when ϕ included
- GCE much better than CE with ϕ , for 4π yields!!
- Non-statistical fluctuations? Centrality selection may help...

Fireballs at midrapidity: $\mu_B(y_s) \approx \mu_B(0) + b y_s^2$

RHIC @ $\sqrt{s_{NN}} = 200 \text{ GeV}: \mu_B(y_s) \approx 25 + 11y_s^2 \text{ [MeV]}$ [Becattini et al., 0709.2599]

Example: AFTER@LHC project: Pb+Pb collisions @ $\sqrt{s_{NN}} = 72$ GeV

Rapidity scan: complementary approach to scan QCD phase diagramsee also Li, Kapusta, 1604.08525; Brewer, Mukherjee, Rajagopal, Yin, 1804.1021525/26

Summary

- Thermal model is a simple model for particle production, but has surprisingly many important details
- Different thermal model codes yield overall consistent results, when the same physical input used.
- New **Thermal-FIST** package provides most of the features used in thermal model analysis in a convenient way.
- Understanding effects of wide resonances and excluded volume interactions is important for precision studies
- Rapidity scan of hadron chemistry provides complementary approach to scan QCD phase diagram

Summary

- Thermal model is a simple model for particle production, but has surprisingly many important details
- Different thermal model codes yield overall consistent results, when the same physical input used.
- New **Thermal-FIST** package provides most of the features used in thermal model analysis in a convenient way.
- Understanding effects of wide resonances and excluded volume interactions is important for precision studies
- Rapidity scan of hadron chemistry provides complementary approach to scan QCD phase diagram

Thanks for your attention!

Backup slides

Light nuclei and EV corrections

Could light nuclei stabilize the fit?

Fitting light nuclei only

