Lattice QCD based equation of state at non-zero baryon density

Volodymyr Vovchenko

ITP & FIAS, Goethe University Frankfurt, Germany

Based on recent works Phys. Lett. B 775, 71 (2017) and arXiv:1711.01261 [nucl-th] done in collaboration with

Z. Fodor, S.D. Katz, A. Pásztor (Wuppertal & Budapest),

O. Philipsen, J. Steinheimer, H. Stoecker (Frankfurt).

High energy physics seminar at BITP

Kyiv, Ukraine December 28, 2017

HGS-HIRe for F

Outline

1. Motivation: QCD equation of state

2. Overview of Lattice QCD results

- QCD equation of state at $\mu_B = 0$
- Methods and results for small non-zero μ_B

3. New lattice QCD data at imaginary μ_B

- Fourier coefficients of fugacity expansion
- Interpretation in terms of baryonic excluded volume

4. Cluster expansion model

- Fourier coefficients
- Taylor expansion coefficients (baryon susceptibilities)
- Radius of convergence

5. Summary and outlook

Strongly interacting matter

• Theory of strong interactions: Quantum Chromodynamics (QCD)

$$\mathcal{L} = \sum_{\mathrm{q=u,d,s,\dots}} ar{q} (i \gamma^\mu D_\mu - m_q) q - rac{1}{4} G^a_{\mu
u} G^{\mu
u}_a$$

- Basic degrees of freedom: quarks and gluons
- At smaller energies confined into hadrons: baryons (qqq) and mesons $(qar{q})$

Where is it relevant?

- Early universe
- Neutron stars
- Heavy-ion collisions

Running coupling "large" at low energies/momenta/temperatures Perturbative techniques have only limited applicability Only first-principle tool: Lattice QCD

Lattice QCD

Basis for calculating observables – Feynman path integral:

$$\langle \hat{\mathcal{O}}[\hat{A}, \hat{q}, \hat{\bar{q}}]
angle = rac{1}{Z} \int DA \, Dq \, D\bar{q} \, \mathcal{O}(A, q, \bar{q}) \, e^{i \, S[A, q, \bar{q}]}$$

Lattice QCD: action discretized on a space-time lattice

Partition function:
$$Z = \text{Tr}(e^{-(\hat{H}-\mu\hat{N})/T}) = \int DU \det M[U,\mu] e^{-S_{YM}}$$

U corresponds to bosonic field configurations, det $M[U, \mu]$ is fermion determinant

At $\mu = 0$ the det $M[U, \mu] e^{-S_{YM}}$ is real and positive

 \Rightarrow can be treated as probability distribution for U

 \Rightarrow evaluation of observables using the Metropolis-like Monte Carlo methods

QCD equation of state at $\mu_B = 0$ from lattice

Early expectations:

- Confinement \Rightarrow hadrons at low T
- Asymptotic freedom \Rightarrow quarks and gluons at high T
- Therefore, **phase transition at some** T_c?

Lattice QCD: No phase transition at $\mu_B = 0$, instead crossover behavior seen

[Aoki, Endrodi, Fodor, Katz, Szabo, Nature 443, 675 (2006)]

Precision LQCD data from 1407.6387 (HotQCD, plotted), 1309.5258 (Wuppertal-Budapest) 5/27

Non-zero μ_B

At $\mu_B \neq 0$ the fermion determinant is **complex:** det $M[U, \mu] = |\det M[U, \mu]| e^{i\theta}$ "Probability distribution" interpretation is lost In addition, $e^{i\theta}$ is highly oscillatory – **sign problem**

Methods:

• (Multi-parameter) reweighting [Fodor, Katz, PLB '02]

Move complex part into observable to recover probability distribution, in a way which optimizes the numerics $% \left({{{\left({{{\left({{{\left({{{c}} \right)}} \right)}} \right)}_{i}}}} \right)$

• Taylor expansion [Allton et al.; Gavai, Gupta; HotQCD Collaboration]

$$\frac{p(T,\mu_B)}{T^4} = \frac{p(T,0)}{T^4} + \frac{\chi_2^B(T,0)}{2!}(\mu_B/T)^2 + \frac{\chi_4^B(T,0)}{4!}(\mu_B/T)^4 + \dots$$

 χ^B_k – cumulants (susceptibilities) of net baryon distribution Can be computed in Lattice QCD at $\mu_B=0$

• Analytic continuation from imaginary μ_B [de Forcrand, Philipsen; D'Elia, Lombardo] No sign problem at $\mu_B = i\tilde{\mu}_B$: Observables can be computed at $\mu_B^2 < 0$ Then analytically continued to $\mu_B^2 > 0$

(Multi-parameter) reweighting

Reweighting: move the complex part into observable, most naive example:

 $\det M[U,\mu] \rightarrow (\det M[U,\mu]/\det M[U,\mu=0]) \det M[U,\mu=0]$

and compute the re-weighted average using configurations generated at $\mu_B=0$

Overlap problem: dominant configurations at $\mu_B = 0$ correspond to tails of the distribution at large, non-zero μ_B

Application: QCD critical point at finite μ_B [Fodor, Katz, JHEP '04]

Taylor expansion

Baryon number fluctuations at $\mu = 0$ provide EoS at finite μ via Taylor expansion:

- Susceptibilities up to $\chi^{\mathcal{B}}_{\mathbf{6}}$ being computed on the lattice
- QCD EoS now available up to $\mu_B/T\simeq 2$ via Taylor expansion
- · Control over higher order coefficients require to go further

Bazavov et al. [BNL-Bielefeld-CCNU Collaboration], PRD 95, 054504 (2017)

Analytic continuation from imaginary μ

No sign problem in QCD at $\mu_B = i\tilde{\mu}_B$: Observables can be computed at $\mu_B^2 < 0$ and then analytically continued to $\mu_B^2 > 0$

Example: [Günther et al. [Wuppertal-Budapest collaboration], 1607.02493]

Analytical continuation on $N_t = 12$ raw data

- Method assumes analyticity of the partition function in μ_B/T
- Extrapolation to large positive $\mu_B/T\gtrsim\pi$ becomes unreliable

Analysis of new lattice data at imaginary chemical potential using the fugacity expansion

QCD observables at imaginary μ_B

QCD thermodynamics with relativistic fugacity/cluster expansion:

$$\frac{p(T,\mu_B)}{T^4} = \sum_{k=0}^{\infty} p_k(T) \cosh\left(\frac{k\,\mu_B}{T}\right) = p_0(T) + \sum_{k=1}^{\infty} \left[p_k(T)/2\right] \left(e^{k\mu_B/T} + e^{-k\mu_B/T}\right)$$

Imaginary μ_B :

 $\mu_B \to i\tilde{\mu}_B \quad \Rightarrow \quad \text{QCD observables obtain trigonometric Fourier series form}$ $\text{Pressure:} \quad \frac{p(T, i\tilde{\mu}_B)}{T^4} = \sum_{k=0}^{\infty} p_k(T) \cos\left(\frac{k\tilde{\mu}_B}{T}\right),$ $\text{Net baryon density:} \quad \frac{\rho_B(T, i\tilde{\mu}_B)}{T^3} = i \sum_{k=1}^{\infty} b_k(T) \sin\left(\frac{k\tilde{\mu}_B}{T}\right), \quad b_k(T) \equiv k p_k(T)$

$$b_k(T) = \frac{2}{\pi T^4} \int_0^{\pi T} d\tilde{\mu}_B \left[\operatorname{Im} \rho_B(T, i\tilde{\mu}_B) \right] \sin(k \, \tilde{\mu}_B / T)$$

Coefficients $b_k(T)$ can and are now being calculated in LQCD Here we analyze $b_k(T)$ with phenomenological models directly at imaginary μ_B NB: Expansion respects the Roberge-Weiss symmetry, $Z(T, \mu_B) = Z(T, \mu_B + i2\pi T) \ 10/27$

Expected asymptotics

• At low T/densities QCD thermodynamics \simeq ideal hadron resonance gas

$$\frac{p^{\operatorname{hrg}}(T,\mu_B)}{T^4} = \frac{\phi_M(T)}{T^3} + 2 \frac{\phi_B(T)}{T^3} \cosh\left(\frac{\mu_B}{T}\right),$$

$$\phi_B(T) = \sum_{i \in B} \int dm \,\rho_i(m) \,\frac{d_i \, m^2 \, T}{2\pi^2} \,\mathcal{K}_2\left(\frac{m}{T}\right),$$

$$p_0^{\operatorname{hrg}}(T) = \frac{\phi_M(T)}{T^3}, \quad p_1^{\operatorname{hrg}}(T) = \frac{2 \,\phi_B(T)}{T^3}, \quad p_k^{\operatorname{hrg}}(T) \equiv 0, \, k = 2, 3, \dots$$

• At high T QCD thermodynamics \simeq ideal gas of massless quarks and gluons $\frac{p^{\text{SB}}(T,\mu_B)}{T^4} = \frac{8\pi^2}{45} + \sum_{f=u,d,s} \left[\frac{7\pi^2}{60} + \frac{1}{2} \left(\frac{\mu_f}{T} \right)^2 + \frac{1}{4\pi^2} \left(\frac{\mu_f}{T} \right)^4 \right], \quad \mu_f = \frac{\mu_B}{3} *,$ $p_0^{\text{SB}} = \frac{64\pi^2}{135}, \quad p_k^{\text{SB}} = \frac{(-1)^{k+1}}{k^2} \frac{4[3+4(\pi k)^2]}{27(\pi k)^2}, \quad b_k^{\text{SB}} = k p_k^{\text{SB}}.$

This work explores intermediate, transition region 130 < T < 230 MeV

*In this study we assume that $\mu_S = \mu_Q = 0$

Lattice QCD results on imaginary μ_B observables

Coefficients $b_k(T)$ of net-baryon expansion are now calculated on the lattice

- Ideal HRG describes well $b_1(T)$ at small temperatures
- All four coefficients appear to converge slowly to Stefan-Boltzmann limit
- What is the mechanism of appearance of non-zero b_k for k > 1?

V.V., A. Pásztor, Z. Fodor, S.D. Katz, H. Stoecker, 1708.02852; S. Borsányi, QM2017

Imaginary μ_B and repulsive baryonic interactions

Repulsive baryonic interactions with excluded-volume [Rischke et al., Z. Phys. C '91]

- Ideal HRG describes well $b_1(T)$ at small temperatures
- Non-zero $b_j(T)$ for $j \ge 2$ signal deviations from ideal HRG
- EV interactions between baryons ($b \simeq 1 \text{ fm}^3$) reproduces lattice trend

V.V., A. Pásztor, Z. Fodor, S. Katz, H. Stoecker, 1708.02852; S. Borsányi, QM2017

"Excluded volume" parameter from imaginary μ_B data

"Excluded volume" parameter of BB interactions can be estimated from lattice

V.V., A. Pásztor, Z. Fodor, S.D. Katz, H. Stoecker, 1708.02852

Relation between leading and higher order coefficients

EV-HRG describes similarly well leading four coefficients A particular feature of the model: temperature-independent ratios

$$\alpha_3 = \frac{b_1(T)}{[b_2(T)]^2} b_3(T), \qquad \alpha_4 = \frac{[b_1(T)]^2}{[b_2(T)]^3} b_4(T), \qquad \dots \qquad \alpha_k = \frac{[b_1(T)]^{k-2}}{[b_2(T)]^{k-1}} b_k(T)$$

Also hold true for many other models with short-range interaction

 α_3 and α_4 are approximately *T*-independent on the lattice, EV somewhat off

Relation between leading and higher order coefficients

EV-HRG describes similarly well leading four coefficients A particular feature of the model: temperature-independent ratios

$$\alpha_3 = \frac{b_1(T)}{[b_2(T)]^2} b_3(T), \qquad \alpha_4 = \frac{[b_1(T)]^2}{[b_2(T)]^3} b_4(T), \qquad \dots \qquad \alpha_k = \frac{[b_1(T)]^{k-2}}{[b_2(T)]^{k-1}} b_k(T)$$

Also hold true for many other models with short-range interaction

 α_3 and α_4 are approximately *T*-independent on the lattice, EV somewhat off Ratios are consistent with the Stefan-Boltzmann limit of massless quarks_{14/27}

Cluster Expansion Model – CEM

Cluster Expansion Model (CEM)

 α_3 and α_4 are consistent with the Stefan-Boltzmann limit. Now assume the same for all higher-order coefficients

CEM formulation:

- $b_1(T)$ and $b_2(T)$ are model input
- All higher order coefficients are then predicted

$$b_k(T) = \alpha_k^{\rm SB} \frac{[b_2(T)]^{k-1}}{[b_1(T)]^{k-2}}$$

• All observables are calculated from fugacity expansion for baryon density

$$\frac{\rho_B(T)}{T^3} = \chi_1^B(T) = \sum_{k=1}^{\infty} b_k(T) \sinh(k \, \mu_B/T)$$

Fugacity expansion convergence criterion is given by the ratio test:

$$\lim_{k\to\infty}\left|\frac{b_{k+1}(T)\sinh\left[\frac{(k+1)\mu_B}{T}\right]}{b_k(T)\sinh\left[\frac{k\mu_B}{T}\right]}\right| = \left|\frac{b_2(T)b_1^{\rm SB}}{b_1(T)b_2^{\rm SB}}\right|e^{\frac{|\mu_B|}{T}} < 1.$$

V.V., J. Steinheimer, O. Philipsen, H. Stoecker, 1711.01261

15/27

Baryon number susceptibilities at $\mu_B = 0$:

$$\chi_{2n}^{\mathcal{B}}(T) \equiv \left. \frac{\partial^{2n}(p/T^4)}{\partial (\mu_B/T)^{2n}} \right|_{\mu_B=0} = \sum_{k=1}^{\infty} k^{2n-1} b_k(T) \simeq \sum_{k=1}^{k_{\max}} k^{2n-1} b_k(T).$$

V.V., J. Steinheimer, O. Philipsen, H. Stoecker, 1711.01261

Baryon number susceptibilities at $\mu_B = 0$:

$$\chi_{2n}^{\mathcal{B}}(T) \equiv \left. \frac{\partial^{2n}(p/T^4)}{\partial (\mu_B/T)^{2n}} \right|_{\mu_B=0} = \sum_{k=1}^{\infty} k^{2n-1} b_k(T) \simeq \sum_{k=1}^{k_{\max}} k^{2n-1} b_k(T).$$

V.V., J. Steinheimer, O. Philipsen, H. Stoecker, 1711.01261

Baryon number susceptibilities at $\mu_B = 0$:

$$\chi_{2n}^{\mathcal{B}}(T) \equiv \left. \frac{\partial^{2n}(p/T^4)}{\partial (\mu_B/T)^{2n}} \right|_{\mu_B=0} = \sum_{k=1}^{\infty} k^{2n-1} b_k(T) \simeq \sum_{k=1}^{k_{\max}} k^{2n-1} b_k(T).$$

V.V., J. Steinheimer, O. Philipsen, H. Stoecker, 1711.01261

Baryon number susceptibilities at $\mu_B = 0$:

$$\chi_{2n}^{\mathcal{B}}(T) \equiv \left. \frac{\partial^{2n}(p/T^4)}{\partial (\mu_B/T)^{2n}} \right|_{\mu_B=0} = \sum_{k=1}^{\infty} k^{2n-1} b_k(T) \simeq \sum_{k=1}^{k_{\max}} k^{2n-1} b_k(T).$$

V.V., J. Steinheimer, O. Philipsen, H. Stoecker, 1711.01261

Baryon number susceptibilities at $\mu_B = 0$:

$$\chi_{2n}^{\mathcal{B}}(T) \equiv \left. \frac{\partial^{2n}(p/T^4)}{\partial (\mu_B/T)^{2n}} \right|_{\mu_B=0} = \sum_{k=1}^{\infty} k^{2n-1} b_k(T) \simeq \sum_{k=1}^{k_{\max}} k^{2n-1} b_k(T).$$

V.V., J. Steinheimer, O. Philipsen, H. Stoecker, 1711.01261

Baryon number susceptibilities at $\mu_B = 0$:

$$\chi_{2n}^{\mathcal{B}}(T) \equiv \left. \frac{\partial^{2n}(p/T^4)}{\partial (\mu_B/T)^{2n}} \right|_{\mu_B=0} = \sum_{k=1}^{\infty} k^{2n-1} b_k(T) \simeq \sum_{k=1}^{k_{\max}} k^{2n-1} b_k(T).$$

V.V., J. Steinheimer, O. Philipsen, H. Stoecker, 1711.01261

Baryon number susceptibilities at $\mu_B = 0$:

$$\chi_{2n}^{\mathcal{B}}(T) \equiv \left. \frac{\partial^{2n}(p/T^4)}{\partial (\mu_B/T)^{2n}} \right|_{\mu_B=0} = \sum_{k=1}^{\infty} k^{2n-1} b_k(T) \simeq \sum_{k=1}^{k_{\max}} k^{2n-1} b_k(T).$$

V.V., J. Steinheimer, O. Philipsen, H. Stoecker, 1711.01261

Baryon number susceptibilities at $\mu_B = 0$:

$$\chi_{2n}^{\mathcal{B}}(T) \equiv \left. \frac{\partial^{2n}(p/T^4)}{\partial (\mu_B/T)^{2n}} \right|_{\mu_B=0} = \sum_{k=1}^{\infty} k^{2n-1} b_k(T) \simeq \sum_{k=1}^{k_{\max}} k^{2n-1} b_k(T).$$

V.V., J. Steinheimer, O. Philipsen, H. Stoecker, 1711.01261

Baryon number susceptibilities at $\mu_B = 0$:

$$\chi_{2n}^{B}(T) \equiv \left. \frac{\partial^{2n}(p/T^{4})}{\partial (\mu_{B}/T)^{2n}} \right|_{\mu_{B}=0} = \sum_{k=1}^{\infty} k^{2n-1} b_{k}(T) \simeq \sum_{k=1}^{k_{\max}} k^{2n-1} b_{k}(T).$$

V.V., J. Steinheimer, O. Philipsen, H. Stoecker, 1711.01261

Baryon number susceptibilities at $\mu_B = 0$:

$$\chi_{2n}^{\mathcal{B}}(T) \equiv \left. \frac{\partial^{2n}(p/T^4)}{\partial (\mu_B/T)^{2n}} \right|_{\mu_B=0} = \sum_{k=1}^{\infty} k^{2n-1} b_k(T) \simeq \sum_{k=1}^{k_{\max}} k^{2n-1} b_k(T).$$

V.V., J. Steinheimer, O. Philipsen, H. Stoecker, 1711.01261

Baryon number susceptibilities at $\mu_B = 0$:

$$\chi_{2n}^{\mathcal{B}}(T) \equiv \left. \frac{\partial^{2n}(p/T^4)}{\partial (\mu_B/T)^{2n}} \right|_{\mu_B=0} = \sum_{k=1}^{\infty} k^{2n-1} b_k(T) \simeq \sum_{k=1}^{k_{\max}} k^{2n-1} b_k(T).$$

V.V., J. Steinheimer, O. Philipsen, H. Stoecker, 1711.01261

Baryon number susceptibilities at $\mu_B = 0$:

$$\chi_{2n}^{B}(T) \equiv \left. \frac{\partial^{2n}(p/T^{4})}{\partial (\mu_{B}/T)^{2n}} \right|_{\mu_{B}=0} = \sum_{k=1}^{\infty} k^{2n-1} b_{k}(T) \simeq \sum_{k=1}^{k_{\max}} k^{2n-1} b_{k}(T).$$

V.V., J. Steinheimer, O. Philipsen, H. Stoecker, 1711.01261

CEM: 4th and 6th order ratios

Hadronic description with interactions (CEM-HRG) works up to $T \simeq 185$ MeV

V.V., J. Steinheimer, O. Philipsen, H. Stoecker, 1711.01261 LQCD data from 1507.04627 (Wuppertal-Budapest), 1701.04325 & 1708.04897 (HotQCD) CEM-HRG: $b_1(T)$ and $b_2(T)$ from EV-HRG model with $b = 1 \text{ fm}^3$ 17/27

CEM: predictions for high orders

To be verified on the lattice

V.V., J. Steinheimer, O. Philipsen, H. Stoecker, 1711.01261

Radius of convergence

Taylor expansion of QCD pressure:

$$\frac{p(T,\mu_B)}{T^4} = \frac{p(T,0)}{T^4} + \frac{\chi_2^B(T)}{2!}(\mu_B/T)^2 + \frac{\chi_4^B(T)}{4!}(\mu_B/T)^4 + \dots$$

Radius of convergence $r_{\mu/T}$ of the expansion is the distance to the nearest singularity of p/T^4 in the *complex* μ_B/T plane at a given temperature T

If the nearest singularity is at a real μ_B/T value, this could point to the QCD critical point

Lattice QCD strategy: Estimate $r_{\mu/T}$ from few leading terms M. D'Elia et al., 1611.08285; S. Datta et al., 1612.06673; A. Bazavov et al., 1701.04325

Ratio estimator:
$$r_n = \left| \frac{(2n+2)(2n+1)\chi^B_{2n}}{\chi^B_{2n+2}} \right|^{1/2}, \qquad r_{\mu/T} = \lim_{n \to \infty} r_n$$

CEM allows to analyze r_n to very high order

Radius of convergence: Domb-Sykes plot

Domb-Sykes plot: $1/r_n^2$ vs 1/n, linear extrapolation to 1/n = 0 yields $r_{\mu/T}$ CEM-LQCD @ T = 160 MeV

Radius of convergence: Structure of Taylor coefficients

Ratio estimator works only when coefficients have regular asymptotic structure: they either share the same sign or they alternate in sign

Radius of convergence: Structure of Taylor coefficients

Ratio estimator works only when coefficients have regular asymptotic structure: they either share the same sign or they alternate in sign

21/27

Radius of convergence: Mercer-Roberts estimator

A more involved Mercer-Roberts estimator:

Taylor expansions for p/T^4 , χ_2^B , and χ_4^B all point to the same $\lim_{n \to \infty} r_n^{-2} \simeq 0.064 \implies r_{\mu/T} \simeq 3.95$ at T = 160 MeV

22/27

Radius of convergence: Temperature dependence

Radius of convergence of Taylor expansion sees Roberge-Weiss transition? R-W transition expected at $T > T_{RW}$ and $Im[\mu_B/T] = \pi$ [Roberge, Weiss, NPB '86] Lattice estimate: $T_{RW} \sim 200$ MeV [C. Bonati et al., 1602.01426]

Radius of convergence: Cross-check with Padé approximants

Padé approximant for χ_2^B :

$$\chi_{2}^{B}(T,\mu_{B}/T) pprox rac{\sum_{j=0}^{m} a_{j} (\mu_{B}/T)^{j}}{1 + \sum_{k=1}^{n} b_{k} (\mu_{B}/T)^{k}}$$

 a_j and b_k constructed from χ^B_{2n} to match Taylor expansion Poles of Padé approximants often point to true singularities of the function

 $Im[\mu_B/T]_c = \pi$, while $Re[\mu_B/T]_c$ decreases towards zero with temperature 24/27

Going beyond the radius of convergence

Outlook: Full QCD equation of state at finite baryon density

Full QCD equation of state at finite baryon density can be obtained from fugacity expansion

$$rac{p(T,\mu_B)}{T^4} = rac{p(T,0)}{T^4} + \sum_{k=1}^\infty rac{b_k(T)}{k} \, [\cosh(k\,\mu_B/T) - 1],$$

or from Taylor expansion

$$\frac{p(T,\mu_B)}{T^4} = \frac{p(T,0)}{T^4} + \sum_{k=1}^{\infty} \frac{\chi^B_{2k}(T)}{(2k)!} \, (\mu_B/T)^{2k},$$

where $p(T,0)/T^4$ is already available from lattice QCD, and where $b_k(T)$ or $\chi^B_{2k}(T)$ can be computed using CEM to arbitrary order.

Various techniques can be employed to circumvent limitations due to a finite radius of convergence.

Summary

- LQCD data at imaginary μ_B suggests presence of repulsive baryonic interactions with 2nd virial coefficient $b \sim 1 \text{ fm}^3$ in the crossover region
- It provides a first-principle evidence for the baryonic "excluded-volume"
- CEM describes all available lattice data on net baryon susceptibilities
- Radius of convergence of Taylor expansion sees a Roberge-Weiss like transition
- No evidence for QCD phase transition at $\mu_B/T < \pi$

Outlook

- QCD equation of state at finite μ_B/T within CEM
- Isospin and strangeness chemical potentials

Summary

- LQCD data at imaginary μ_B suggests presence of repulsive baryonic interactions with 2nd virial coefficient $b \sim 1 \text{ fm}^3$ in the crossover region
- It provides a first-principle evidence for the baryonic "excluded-volume"
- CEM describes all available lattice data on net baryon susceptibilities
- Radius of convergence of Taylor expansion sees a Roberge-Weiss like transition
- No evidence for QCD phase transition at $\mu_B/T < \pi$

Outlook

- QCD equation of state at finite μ_B/T within CEM
- Isospin and strangeness chemical potentials

Thanks for your attention!

Backup slides

Baryonic excluded volume

Baryon-baryon interactions seem to exhibit a repulsive core – excluded volume EV model: a simple approach for repulsive interactions [Rischke et al., Z. Phys. C '91]

$$V
ightarrow V - bN \qquad \Rightarrow \qquad p(T,\mu) = p^{
m id}(T,\mu-bp)$$

EV-HRG model

- Identical EV interactions for all baryon-baryon and antibaryon-antibaryon pairs
- Baryon-antibaryon, meson-meson, meson-baryon EV terms neglected
- A single parameter *b* characterizing interactions

Three independent subsystems: mesons + baryons + antibaryons

$$p(T, \boldsymbol{\mu}) = p_M(T, \boldsymbol{\mu}) + p_B(T, \boldsymbol{\mu}) + p_{\bar{B}}(T, \boldsymbol{\mu}),$$

$$p_M(T, \mu) = \sum_{j \in M} p_j^{\mathrm{id}}(T, \mu_j) \quad \text{and} \quad p_B(T, \mu) = \sum_{j \in B} p_j^{\mathrm{id}}(T, \mu_j - b p_B)$$

Total density of baryons: $n_B^{\text{ev}} = (1 - b n_B^{\text{ev}}) e^{\mu_B/T} \phi_B(T) \exp\left(-\frac{b n_B^{\text{ev}}}{1 - b n_B^{\text{ev}}}\right).$

V.V., M. Gorenstein, H. Stoecker, Phys. Rev. Lett. 118, 182301 (2017)

L. Satarov, V.V., P. Alba, M. Gorenstein, H. Stoecker, Phys. Rev. C 95, 024902 (2017)