Nuclear clusters in an off-equilibrium thermal model

Volodymyr Vovchenko (LBNL)

Mini-workshop "Origin of nuclear clusters in hadronic collisions"

May 19, 2020

- Nucleosynthesis in heavy-ion collisions via the Saha equation V.V., K. Gallmeister, J. Schaffner-Bielich, C. Greiner, *Phys. Lett. B* **800**, 135131 (2020)
- Off-equilibrium light nuclei production with rate equations V.V., D. Oliinychenko, V. Koch, *to appear*

Unterstützt von / Supported by

Alexander von Humboldt Stiftung/Foundation

Loosely-bound objects in heavy-ion collisions

binding energies: ²H, ³He, ⁴He, ${}^{3}_{\Lambda}$ H: 2.22, 7.72, 28.3, 0.130 MeV $\ll T \sim 150$ MeV "snowballs in hell"

The production mechanism is not established. Common approaches include **thermal** nuclei emission together with hadrons [Andronic et al., PLB '11;...] or final-state **coalescence** of nucleons close in phase-space [Butler, Pearson, PRL '61; Scheibl, Heinz, PRC '99;...]

Two experimental observations at the LHC

[A. Andronic et al., Nature **561**, 321 (2018)]

What happens between T_{ch} and T_{kin} ?

Hadronic phase in central HICs

- At $T_{ch} \approx 150 160$ MeV inelastic collisions cease, yields of hadrons frozen
- Kinetic equilibrium maintained down to $T_{kin} \approx 100 120$ MeV through (pseudo)elastic scatterings

Big Bang vs LHC "Little Bangs"

- Hadrons (nucleons) form and "freeze-out" chemically before nuclei
- Bosons (photons or pions) catalyse nucleosynthesis

e.g. $p + n \leftrightarrow d + \gamma$ vs $p + n + \pi \leftrightarrow d + \pi$

Ionization of a gas (one level)

$$X \longleftrightarrow X^+ + e^-$$

 $\frac{n_e^2}{n_0} = \frac{2}{\lambda_e^3} \frac{g_1}{g_0} \exp(-\epsilon/T) \qquad n_1 = n_e \qquad \lambda_e: \text{ deBroglie}$

Megh Nad Saha, Phil. Mag. Series 6 40:238 (1920) 472

• Equivalently, chemical potentials: $\mu_0=\mu_1+\mu_e$

• Ionization of a gas (one level) $\frac{n_e^2}{n_0} = \frac{2}{\lambda_e^3} \frac{g_1}{g_0} \exp(-\epsilon/T) \qquad \qquad n_1 = n_e \qquad \lambda_e: \text{ deBroglie}$

Megh Nad Saha, Phil. Mag. Series 6 40:238 (1920) 472

• Equivalently, chemical potentials: $\mu_0 = \mu_1 + \mu_e$

Nuclear equivalent: detailed balance in an expanding system (early universe/HIC) Deuteron number evolution through $pnX \leftrightarrow dX$, in kinetic equilibrium

 $\frac{dN_d}{d\tau} = \langle \sigma_{dX} v_{rel} \rangle N_d^0 n_x^0 e^{\mu_p/T} e^{\mu_n/T} e^{\mu_X/T} - \langle \sigma_{dX} v_{rel} \rangle N_d^0 n_x^0 e^{\mu_d/T} e^{\mu_X/T}$

• Ionization of a gas (one level) $\frac{n_e^2}{n_0} = \frac{2}{\lambda_e^3} \frac{g_1}{g_0} \exp(-\epsilon/T) \qquad \qquad n_1 = n_e \qquad \lambda_e: \text{ deBroglie}$

Megh Nad Saha, Phil. Mag. Series 6 40:238 (1920) 472

• Equivalently, chemical potentials: $\mu_0 = \mu_1 + \mu_e$

Nuclear equivalent: detailed balance in an expanding system (early universe/HIC) Deuteron number evolution through $pnX \leftrightarrow dX$, in kinetic equilibrium

```
\frac{dN_d}{d\tau} = \langle \sigma_{dX} v_{rel} \rangle N_d^0 n_x^0 e^{\mu_p/T} e^{\mu_n/T} e^{\mu_X/T} - \langle \sigma_{dX} v_{rel} \rangle N_d^0 n_x^0 e^{\mu_d/T} e^{\mu_X/T}
small big big big
```

• Ionization of a gas (one level) $\frac{n_e^2}{n_0} = \frac{2}{\lambda_e^3} \frac{g_1}{g_0} \exp(-\epsilon/T) \qquad \qquad n_1 = n_e \qquad \lambda_e: \text{ deBroglie}$

Megh Nad Saha, Phil. Mag. Series 6 40:238 (1920) 472

• Equivalently, chemical potentials: $\mu_0 = \mu_1 + \mu_e$

Nuclear equivalent: detailed balance in an expanding system (early universe/HIC) Deuteron number evolution through $pnX \leftrightarrow dX$, in kinetic equilibrium

 $\begin{array}{ccc} & \text{gain} & \text{loss} \\ \hline \frac{dN_d}{d\tau} = \langle \sigma_{dX} v_{rel} \rangle \ N_d^0 \ n_x^0 \ e^{\mu_p/T} \ e^{\mu_n/T} \ e^{\mu_x/T} - \langle \sigma_{dX} v_{rel} \rangle \ N_d^0 \ n_x^0 \ e^{\mu_d/T} \ e^{\mu_x/T} \\ \hline small & big & big \\ \hline gain \approx \text{loss} & \rightarrow & \mu_d \approx \mu_p + \mu_n \\ \hline gain \approx \text{loss} & \rightarrow & \mu_d \approx \mu_p + \mu_n \\ \hline gain \approx \text{loss} & \rightarrow & \mu_d \approx \mu_p + \mu_n \\ \hline gain \approx \text{loss} & \rightarrow & \mu_d \approx \mu_p + \mu_n \\ \hline gain \approx \text{loss} & \rightarrow & \mu_d \approx \mu_p + \mu_n \\ \hline gain \approx \text{loss} & \rightarrow & \mu_d \approx \mu_p + \mu_n \\ \hline gain \approx \text{loss} & \rightarrow & \mu_d \approx \mu_p + \mu_n \\ \hline gain \approx \text{loss} & \rightarrow & \mu_d \approx \mu_p + \mu_n \\ \hline gain \approx \text{loss} & \rightarrow & \mu_d \approx \mu_p + \mu_n \\ \hline gain \approx \text{loss} & \rightarrow & \mu_d \approx \mu_p + \mu_n \\ \hline gain \approx \text{loss} & \rightarrow & \mu_d \approx \mu_p + \mu_n \\ \hline gain \approx \text{loss} & \rightarrow & \mu_d \approx \mu_p + \mu_n \\ \hline gain \approx \text{loss} & \rightarrow & \mu_d \approx \mu_p + \mu_n \\ \hline gain \approx \text{loss} & \rightarrow & \mu_d \approx \mu_p + \mu_n \\ \hline gain \approx \text{loss} & \rightarrow & \mu_d \approx \mu_p + \mu_n \\ \hline gain \approx \text{loss} & \rightarrow & \mu_d \approx \mu_p + \mu_n \\ \hline gain \approx \text{loss} & \rightarrow & \mu_d \approx \mu_p + \mu_n \\ \hline gain \approx \text{loss} & \rightarrow & \mu_d \approx \mu_p + \mu_n \\ \hline gain \approx \text{loss} & \rightarrow & \mu_d \approx \mu_p + \mu_n \\ \hline gain \approx \text{loss} & \rightarrow & \mu_d \approx \mu_p + \mu_n \\ \hline gain \approx \text{loss} & \rightarrow & \mu_d \approx \mu_p + \mu_n \\ \hline gain \approx \text{loss} & \rightarrow & \mu_d \approx \mu_p + \mu_n \\ \hline gain \approx \text{loss} & \rightarrow & \mu_d \approx \mu_p + \mu_n \\ \hline gain \approx \text{loss} & \rightarrow & \mu_d \approx \mu_p + \mu_n \\ \hline gain \approx \text{loss} & \rightarrow & \mu_d \approx \mu_p + \mu_n \\ \hline gain \approx \text{loss} & \rightarrow & \mu_d \approx \mu_p + \mu_n \\ \hline gain \approx \text{loss} & \rightarrow & \mu_d \approx \mu_p + \mu_n \\ \hline gain \approx \text{loss} & \rightarrow & \mu_d \approx \mu_p + \mu_n \\ \hline gain \approx \text{loss} & \rightarrow & \mu_d \approx \mu_p + \mu_h \\ \hline gain \approx \text{loss} & \rightarrow & \mu_d \approx \mu_p + \mu_h \\ \hline gain \approx \text{loss} & \rightarrow & \mu_d \approx \mu_p + \mu_h \\ \hline gain \approx \text{loss} & \rightarrow & \mu_d \approx \mu_h + \mu_h \\ \hline gain \approx \text{loss} & \rightarrow & \mu_d \approx \mu_h + \mu_h \\ \hline gain \approx \text{loss} & \rightarrow & \mu_d \approx \mu_h + \mu_h \\ \hline gain \approx \text{loss} & \rightarrow & \mu_d \approx \mu_h + \mu_h \\ \hline gain \approx \text{loss} & \rightarrow & \mu_d \approx \mu_h + \mu_h \\ \hline gain \propto \mu$

• Chemical equilibrium lost at $T_{ch} = 155$ MeV, abundances of nucleons are frozen and acquire effective fugacity factors: $n_i = n_i^{eq} e^{\mu_N/T}$

- Chemical equilibrium lost at $T_{ch} = 155$ MeV, abundances of nucleons are frozen and acquire effective fugacity factors: $n_i = n_i^{eq} e^{\mu_N/T}$
- Isentropic expansion driven by effectively massless mesonic d.o.f.

$$\frac{V}{V_{\rm ch}} = \left(\frac{T_{\rm ch}}{T}\right)^3, \qquad \mu_N \simeq \frac{3}{2} T \ln\left(\frac{T}{T_{\rm ch}}\right) + m_N \left(1 - \frac{T}{T_{\rm ch}}\right)$$

- Chemical equilibrium lost at $T_{ch} = 155$ MeV, abundances of nucleons are frozen and acquire effective fugacity factors: $n_i = n_i^{eq} e^{\mu_N/T}$
- Isentropic expansion driven by effectively massless mesonic d.o.f.

$$rac{V}{V_{
m ch}} = \left(rac{T_{
m ch}}{T}
ight)^3$$
, $\mu_N \simeq rac{3}{2} T \ln\left(rac{T}{T_{
m ch}}
ight) + m_N \left(1 - rac{T}{T_{
m ch}}
ight)$

• Detailed balance for nuclear reactions, $X + A \leftrightarrow X + \sum_i A_i$, X is e.g. a pion

$$\frac{n_A}{\prod_i n_{A_i}} = \frac{n_A^{\text{eq}}}{\prod_i n_{A_i}^{\text{eq}}}, \quad \Leftrightarrow \quad \mu_A = \sum_i \mu_{A_i}, \quad \text{e.g.} \quad \mu_d = \mu_p + \mu_n, \quad \mu_{3\text{He}} = 2\mu_p + \mu_n, \quad \dots$$

- Chemical equilibrium lost at $T_{ch} = 155$ MeV, abundances of nucleons are frozen and acquire effective fugacity factors: $n_i = n_i^{eq} e^{\mu_N/T}$
- Isentropic expansion driven by effectively massless mesonic d.o.f.

$$rac{V}{V_{\mathsf{ch}}} = \left(rac{T_{\mathsf{ch}}}{T}
ight)^3$$
, $\mu_N \simeq rac{3}{2} T \ln\left(rac{T}{T_{\mathsf{ch}}}
ight) + m_N \left(1 - rac{T}{T_{\mathsf{ch}}}
ight)$

• Detailed balance for nuclear reactions, $X + A \leftrightarrow X + \sum_i A_i$, X is e.g. a pion

$$\frac{n_A}{\prod_i n_{A_i}} = \frac{n_A^{\text{eq}}}{\prod_i n_{A_i}^{\text{eq}}}, \quad \Leftrightarrow \quad \mu_A = \sum_i \mu_{A_i}, \quad \text{e.g. } \mu_d = \mu_p + \mu_n, \quad \mu_{3\text{He}} = 2\mu_p + \mu_n, \quad \dots$$
$$X_A = d_A \left[(d_M)^{A-1} \zeta(3)^{A-1} \pi^{\frac{1-A}{2}} 2^{-\frac{3+A}{2}} \right] A^{5/2} \left(\frac{T}{m_N} \right)^{\frac{3}{2}(A-1)} \eta_B^{A-1} \exp\left(\frac{B_A}{T}\right) d_M \sim 11 - 13, \quad \eta_B \simeq 0.03 \quad \text{fixed at } T_{\text{ch}}$$

- Chemical equilibrium lost at $T_{ch} = 155$ MeV, abundances of nucleons are frozen and acquire effective fugacity factors: $n_i = n_i^{eq} e^{\mu_N/T}$
- Isentropic expansion driven by effectively massless mesonic d.o.f.

$$rac{V}{V_{\mathsf{ch}}} = \left(rac{T_{\mathsf{ch}}}{T}
ight)^3$$
, $\mu_N \simeq rac{3}{2} \ T \ \mathsf{ln} \left(rac{T}{T_{\mathsf{ch}}}
ight) + m_N \ \left(1 - rac{T}{T_{\mathsf{ch}}}
ight)$

• Detailed balance for nuclear reactions, $X + A \leftrightarrow X + \sum_i A_i$, X is e.g. a pion

$$\frac{n_{A}}{\prod_{i} n_{A_{i}}} = \frac{n_{A}^{\text{eq}}}{\prod_{i} n_{A_{i}}^{\text{eq}}}, \quad \Leftrightarrow \quad \mu_{A} = \sum_{i} \mu_{A_{i}}, \quad \text{e.g.} \quad \mu_{d} = \mu_{p} + \mu_{n}, \quad \mu_{3}_{\text{He}} = 2\mu_{p} + \mu_{n}, \quad \dots$$

$$X_{A} = d_{A} \left[(d_{M})^{A-1} \zeta(3)^{A-1} \pi^{\frac{1-A}{2}} 2^{-\frac{3+A}{2}} \right] A^{5/2} \left(\frac{T}{m_{N}} \right)^{\frac{3}{2}(A-1)} \eta_{B}^{A-1} \exp\left(\frac{B_{A}}{T} \right)$$

$$d_{M} \sim 11 - 13, \quad \eta_{B} \simeq 0.03 \quad \text{fixed at } T_{\text{ch}}$$

$$BBN: \quad X_{A} = d_{A} \left[\zeta(3)^{A-1} \pi^{\frac{1-A}{2}} 2^{\frac{3A-5}{2}} \right] A^{\frac{5}{2}} \left(\frac{T}{m_{N}} \right)^{\frac{3}{2}(A-1)} \eta^{A-1} X_{p}^{Z} X_{n}^{A-Z} \exp\left(\frac{B_{A}}{T} \right)$$

[E. Kolb, M. Turner, "The Early Universe" (1990)] 7

(BBN-like) Saha equation vs thermal model

Saha equation:

$$\frac{N_{A}(T)}{N_{A}(T_{ch})} \simeq \left(\frac{T}{T_{ch}}\right)^{\frac{3}{2}(A-1)} \exp \left[B_{A}\left(\frac{1}{T}-\frac{1}{T_{ch}}\right)\right] \qquad B_{A} \ll T$$
Thermal model:

$$\left[\frac{N_{A}(T)}{N_{A}(T_{ch})}\right]_{eq.} \simeq \left(\frac{T}{T_{ch}}\right)^{-\frac{3}{2}} \exp \left[-m_{A}\left(\frac{1}{T}-\frac{1}{T_{ch}}\right)\right] \qquad m_{A} \gg T$$

Strong exponential dependence on the temperature is eliminated in the Saha equation approach

Further, quantitative applications require numerical treatment of full spectrum of *massive* mesonic and baryonic resonances

Partial chemical equilibrium (PCE)

Expansion of hadron resonance gas in partial chemical equilibrium at $T < T_{ch}$

[H. Bebie, P. Gerber, J.L. Goity, H. Leutwyler, Nucl. Phys. B '92; C.M. Hung, E. Shuryak, PRC '98]

Chemical composition of stable hadrons is fixed, kinetic equilibrium maintained through pseudo-elastic resonance reactions $\pi\pi \leftrightarrow \rho$, $\pi K \leftrightarrow K^*$, $\pi N \leftrightarrow \Delta$, etc.

E.g.: $\pi + 2\rho + 3\omega + \cdots = const$, $K + K^* + \cdots = const$, $N + \Delta + N^* + \cdots = const$,

Effective chemical potentials:

 $\tilde{\mu}_j = \sum_{i \in \text{stable}} \langle n_i \rangle_j \mu_i, \quad \langle n_i \rangle_j - \text{mean number of hadron } i \text{ from decays of hadron } j, \quad j \in \text{HRG}$

Conservation laws:

Numerical implementation within (extended) **Thermal-FIST** package ***** [**V.V.**, H. Stoecker, *Comput. Phys. Commun.* **244,** 295 (2019)] **open source:** https://github.com/vlvovch/Thermal-FIST

Full calculation: parameters

"Initial conditions": $T_{ch} = 155$ MeV, $V_{ch} = 4700$ fm³ (chemical freeze-out)

values from V.V., Gorenstein, Stoecker, 1807.02079

Full calculation: nuclei

Deviations from thermal model predictions are moderate despite significant cooling and dilution. Is this the reason for why thermal model works so well?

Echoes earlier transport model conclusions for d [D. Oliinychenko, et al., PRC 99, 044907 (2019)] For $T = T_{kin}$ similar results reported in [X. Xu, R. Rapp, EPJA 55, 68 (2019)] 11

Full calculation: hypernuclei

Hypernuclei stay close to the thermal model prediction. An exception is a hypothetical $\Xi\Xi$ state \leftarrow planned measurement in Runs 3 & 4 at the LHC

[LHC Yellow Report, 1812.06772]

with D. Oliinychenko and V. Koch, to appear

with D. Oliinychenko and V. Koch, to appear

$$\begin{array}{ccc} & \mbox{gain} & \mbox{loss} \\ \hline \frac{dN_d}{d\tau} = \langle \sigma_{dX} v_{rel} \rangle \ N_d^0 \ n_x^0 \ e^{\mu_p/T} \ e^{\mu_n/T} \ e^{\mu_x/T} - \langle \sigma_{dX} v_{rel} \rangle \ N_d^0 \ n_x^0 \ e^{\mu_d/T} \ e^{\mu_x/T} \\ \hline \mbox{small} & \mbox{big} & \mbox{big} \\ \hline \mbox{gain} \approx \mbox{loss} & \rightarrow & \mu_d \approx \mu_p + \mu_n & = \mbox{detailed balance} \\ = \mbox{law of mass action} \end{array}$$

with D. Oliinychenko and V. Koch, to appear

Relax the assumption of equilibrium for $AX \leftrightarrow \sum_i A_i X$ reactions

- Pion catalysis of light nuclei reactions. Destruction through $A\pi \rightarrow \sum_i A_i\pi$ and creation through $\sum_i A_i\pi \rightarrow A\pi$. Detailed balance principle respected but relative chemical equilibrium not enforced
- Bulk hadron matter evolves in partial chemical equilibrium, unaffected by light nuclei

$$\frac{dN_A}{d\tau} = \langle \sigma_{A\pi}^{\rm in} v_{rel} \rangle n_{\pi}^{\rm pce} \left(N_A^{\rm saha} - N_A \right)$$

Static fireball: n_{π}^{pce} , N_{A}^{saha} , $\langle \sigma_{A\pi}^{\text{in}} v_{rel} \rangle = const$

$$N_A(au) = N_A^{ ext{saha}} + (N_A(au_0) - N_A^{ ext{saha}}) e^{-rac{ au - au_0}{ au_{ ext{req}}}}, \qquad au_{ ext{eq}} = rac{1}{\langle \sigma_{A\pi}^{ ext{in}} v_{ ext{rel}}
angle n_\pi^{ ext{pce}}},$$

Saha limit: $\tau_{eq} \rightarrow 0 \ (\sigma_{A\pi}^{in} \rightarrow \infty)$

Model input

Cross sections

Optical model for $\sigma_{A\pi}^{in}$ [J. Eisenberg, D.S. Koltun, '80]

• Expansion (both transverse and longitudinal)

 $\frac{V}{V_{ch}} = \frac{\tau}{\tau_{ch}} \frac{\tau_{\perp}^2 + \tau^2}{\tau_{\perp}^2 + \tau_{ch}^2}, \qquad \tau_{ch} = 9 \text{ fm}, \qquad \tau_{\perp} = 6.5 \text{ fm}$ [Y. Pan, S. Pratt, PRC 89, 044911 (2014)] 15

Degree of equilibration

• Local equilibration times remain small (but also $\tau_A^{eq} \ll B_A^{-1}$)

• $(gain + loss) \gg |gain - loss| \rightarrow$ Saha equation at work

Can snowballs survive hell?

Can snowballs survive hell?

- Survival down to 100 MeV is unlikely
- Peripheral collisions might offer better chances

Summary and outlook

- Nucleosynthesis in HICs at LHC via the Saha equation is in analogy to initial stages of big bang nucleosynthesis in the early universe. Results agree with the thermal model, but $any T < T_{ch}$ permitted!
- Description of pion-catalyzed nuclear cluster production using rate equations agrees with the Saha equation, for *all* nuclei up to ⁴He.
- "Snowballs" produced at hadronization do not survive "hell" down to $T_{\rm kin}=100$ MeV.
- Outlook: Rate equations for resonances and $B\overline{B}$ annihilations.
- Open questions: $\tau_A^{eq} \ll B_A^{-1}$, i.e. deuteron in the hadronic phase cannot yet know that it is deuteron. Quantum mechanical treatment of bound systems in medium needed.

Summary and outlook

- Nucleosynthesis in HICs at LHC via the Saha equation is in analogy to initial stages of big bang nucleosynthesis in the early universe. Results agree with the thermal model, but $any T < T_{ch}$ permitted!
- Description of pion-catalyzed nuclear cluster production using rate equations agrees with the Saha equation, for *all* nuclei up to ⁴He.
- "Snowballs" produced at hadronization do not survive "hell" down to $T_{\rm kin}=100$ MeV.
- Outlook: Rate equations for resonances and $B\overline{B}$ annihilations
- Open questions: $\tau_A^{eq} \ll B_A^{-1}$, i.e. deuteron in the hadronic phase cannot yet know that it is deuteron. Quantum mechanical treatment of bound systems in medium needed.

Thanks for your attention!

Backup slides

(Simplified) Saha equation vs thermal model

Strong exponential dependence on the temperature is eliminated in the Saha equation approach

Further, quantitative applications require numerical treatment of full spectrum of *massive* mesonic and baryonic resonances

Full calculation: deuteron yield

Resonance feed-down is important in precision studies

Saha equation and excluded volume effects

Eigenvolumes: effective mechanism for nuclei suppression at large densities

Excluded-volume effects go away as the system dilutes. At $T \cong 100$ MeV agrees with the point-particle model. Does not describe data for $T = T_{ch}$

Rate equation for nuclei and resonances

Treat both nuclear reactions and resonances decays using rate equations, i.e. PCE not enforced

Rate equations for all particles

 $d\tau$

$$\frac{dN_A}{d\tau} = \langle \sigma_{A\pi} v_{rel} \rangle N_\pi n_A^{eq} (e^{A\mu_N/T} - e^{\mu_A/T})$$
$$\frac{dN_R}{d\tau} = \langle \Gamma_{R \to \sum_i a_i} \rangle N_R^{eq} (e^{\sum_{i \in R} \mu_i/T} - e^{\mu_R/T})$$

Entropy production: 0.6% at $T_{kin} = 100$ MeV

Results are very close to Saha equation

Big Bang nucleosynthesis

$$X_{A} = d_{A} \left[\zeta(3)^{A-1} \pi^{\frac{1-A}{2}} 2^{\frac{3A-5}{2}} \right] A^{\frac{5}{2}} \left(\frac{T}{m_{N}} \right)^{\frac{3}{2}(A-1)} \eta^{A-1} X_{p}^{Z} X_{n}^{A-Z} \exp\left(\frac{B_{A}}{T} \right)$$

 $\eta \sim 10^{-10}$ – baryon-to-photon ratio

[E. Kolb, M. Turner, "The Early Universe" (1990)]

Similarities:

- Inelastic nucleonic reactions freeze-out before nuclei formation
- Isentropic expansion of boson-dominated matter (photons in BBN vs mesons in HIC), baryon-to-boson ratio: $\eta_{BBN} \sim 10^{-10}$, $\eta_{LHC} \sim 0.05$
- Strong nuclear formation and regeneration reactions \rightarrow Saha equation

Differences:

- Time scales: 1-100 s in BBN vs $\sim 10^{-22}$ s in HIC
- Temperatures: $T_{BBN} < 1$ MeV vs $T_{HIC} \sim 100$ MeV
- Binding energies, proton-neutron mass difference, and neutron lifetime important in BBN, less so in HICs
- $\mu_B \approx 0$ at the LHC, $\mu_B \neq 0$ in BBN
- Resonance feeddown important at LHC, irrelevant in BBN

LHC deuteron-synthesis

PHYSICAL REVIEW C 99, 044907 (2019)

Editors' Suggestion

Featured in Physics

Microscopic study of deuteron production in PbPb collisions at $\sqrt{s} = 2.76$ TeV via hydrodynamics and a hadronic afterburner

Dmytro Oliinychenko,¹ Long-Gang Pang,^{1,2} Hannah Elfner,^{3,4,5} and Volker Koch¹ ¹Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, California 94720, USA ²Physics Department, University of California, Berkeley, California 94720, USA ³Frankfurt Institute for Advanced Studies, Ruth-Moufang-Strasse 1, 60438 Frankfurt am Main, Germany ⁴Institute for Theoretical Physics, Goethe University, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany ⁵GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291 Darmstadt, Germany

FIG. 1. Deuteron-pion interaction cross sections from SAID database [40] and partial wave analysis [41] are compared to our parametrizations (Tables II and III in the Appendix). Inelastic $d\pi \leftrightarrow$

FIG. 5. Reaction rates of the most important $\pi d \leftrightarrow \pi pn$ reaction in forward and reverse direction.

Law of mass action at work

 $O_{t,p,d}$

 $O_{t,p,d} = N_t N_p / (N_d)^2$ suggested as a possible probe of critical behavior [K.J. Sun et al., PLB '17, PLB '18]

Possible to obtain a non-monotonic behavior of $O_{t,p,d}$ in ideal gas picture Relevance of excited ⁴He states also pointed out in baryon preclustering study [Torres-Rincon, Shuryak, 1910.08119]

Resonance suppression in hadronic phase

Yields of resonances are *not* conserved in partial chemical equilibrium E.g. K^{*} yield dilutes during the cooling through reactions $\pi K \leftrightarrow K^*$

Fitting the yields of short-lived resonances is a new way to extract the kinetic freeze-out temperature

Kinetic freeze-out temperature from resonances

Fit of K^{*0} and ρ^0 abundances extracts the kinetic freeze-out temperature

Solves the T_{kin} -vs- $\langle \beta_T \rangle$ anticorrelation problem of blast-wave fits