Fluctuations of conserved charges in hydrodynamics and molecular dynamics

Volodymyr Vovchenko (INT Seattle / LBNL)

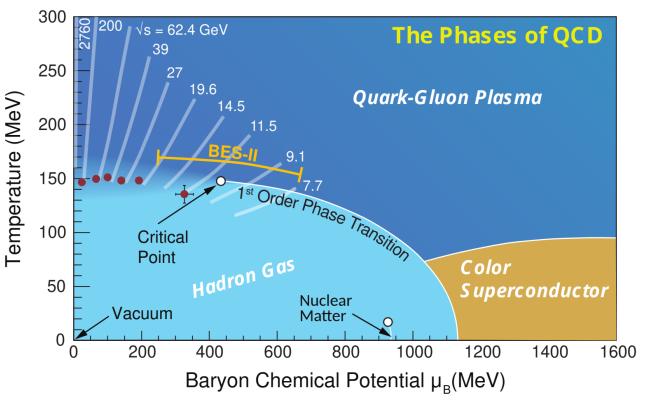
SQM 2022 - The 20th International Conference on Strangeness in Quark Matter

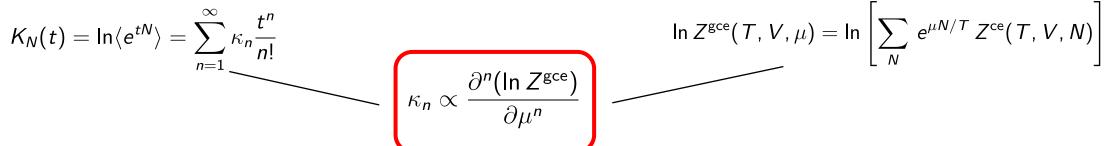
June 15, 2022

Acknowledgements:

M.I. Gorenstein, V. Koch, V.A. Kuznietsov, R. Poberezhnyuk, O. Savchuk, J. Steinheimer, H. Stoecker

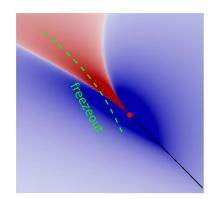
QCD phase structure




Figure from Bzdak et al., Phys. Rept. '20

- ullet Dilute hadron gas at low T & $ho_{
 m B}$ due to confinement, quark-gluon plasma high T & $ho_{
 m B}$
- Nuclear liquid-gas transition in cold and dense matter, lots of other phases conjectured

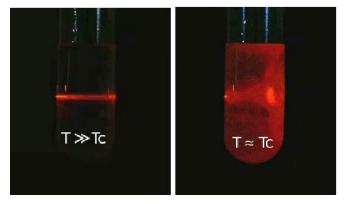
Event-by-event fluctuations and statistical mechanics


Cumulant generating function

Grand partition function

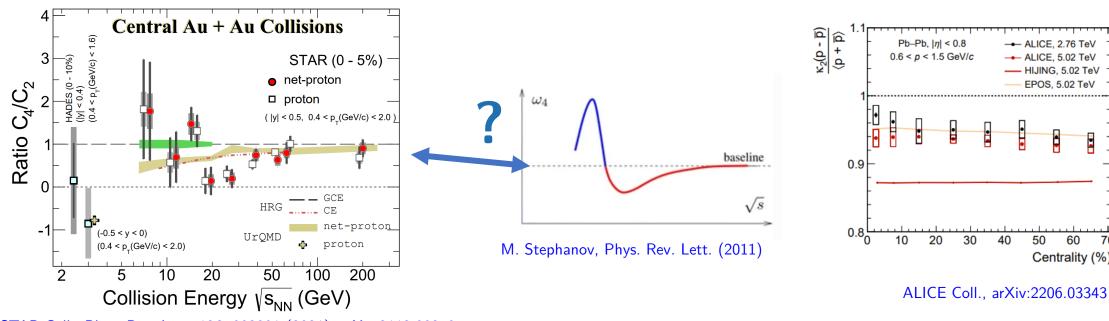
Cumulants measure chemical potential derivatives of the (QCD) equation of state

• (QCD) critical point – large correlation length, critical fluctuations of baryon number



M. Stephanov, PRL '09, '11 Energy scans at RHIC (STAR) and CERN-SPS (NA61/SHINE)

$$\kappa_2 \sim \xi^2$$
, $\kappa_3 \sim \xi^{4.5}$, $\kappa_4 \sim \xi^7$ $\xi \to \infty$

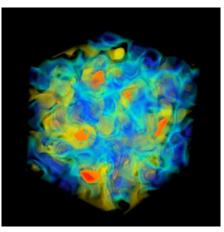

Looking for enhanced fluctuations and non-monotonicities

Critical opalescence

Experimental measurements

Beam energy scan in search for the critical point (STAR Coll.)

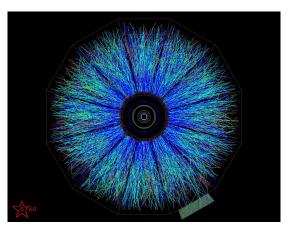
STAR Coll., Phys. Rev. Lett. 126, 092301 (2021); arXiv:2112.00240


Reduced errors (better statistics), more energies, to come soon from RHIC-BES-II program, STAR-FXT etc.

Can we learn more from the more accurate data available for κ_2 and κ_3 ?

Centrality (%)

Theory vs experiment: Challenges for fluctuations


Theory

© Lattice QCD@BNL

- Coordinate space
- In contact with the heat bath
- Conserved charges
- Uniform
- Fixed volume

Experiment

STAR event display

- Momentum space
- Expanding in vacuum
- Non-conserved particle numbers
- Inhomogenous
- Fluctuating volume

Theory vs experiment: Challenges for fluctuations

- canonical ensemble effects
 - subensemble acceptance method (SAM)
 R. Poberezhnyuk, talk Wed 11:10

```
VV, Savchuk, Poberezhnyuk, Gorenstein, Koch, PLB 811, 135868 (2020); JHEP 089(2020); PRC 105, 014903 (2022)
```

ideal gas limit A. Rustamov, talk Mon 17:35

```
Bzdak, Koch, Skokov, PRC 87, 014901 (2013); Braun-Munzinger et al., NPA 1008, 122141 (2021)
```

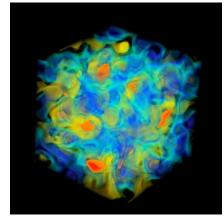
coordinate vs momentum space

```
Ling, Stephanov, PRC 93, 034915 (2016); Ohnishi, Kitazawa, Asakawa, PRC 94, 044905 (2016)
```

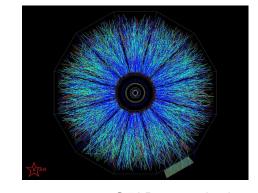
• proxy observables in experiment (net-proton, net-kaon) vs conserved charges in QCD (net-baryon, net-strangeness) M. Kitazawa, talk Mon 16:45

```
Kitazawa, Asakawa, PRC 85, 021901 (2012); VV, Jiang, Gorenstein, Stoecker, PRC 98, 024910 (2018)
```

volume fluctuations


```
Gorenstein, Gazdzicki, PRC 84, 014904 (2011); Skokov, Friman, Redlich, PRC 88, 034911 (2013) X. Luo, J. Xu, B. Mohanty, JPG 40, 105104 (2013); Braun-Munzinger, Rustamov, Stachel, NPA 960, 114 (2017)
```

hadronic phase


```
Steinheimer, VV, Aichelin, Bleicher, Stoecker, PLB 776, 32 (2018) Savchuk, VV, Koch, Steinheimer, Stoecker, PLB 827, 136983 (2022)
```

non-equilibrium (memory) effects

Mukherjee, Venugopalan, Yin, PRC 92, 034912 (2015) Asakawa, Kitazawa, Müller, PRC 101, 034913 (2020)

© Lattice QCD@BNL

STAR event display

Dynamical approaches to the QCD critical point search

1. Deviations from precision calculations of non-critical fluctuations

- Include essential non-critical contributions to (net-)proton number cumulants
- Exact baryon conservation + hadronic interactions* (hard core repulsion)
- Based on realistic hydrodynamic simulations tuned to bulk data

[VV, C. Shen, V. Koch, Phys. Rev. C 105, 014904 (2022)]

[V.A. Kuznietsov, O. Savchuk, M.I. Gorenstein, V. Koch, VV, Phys. Rev. C 105, 014904 (2022)]

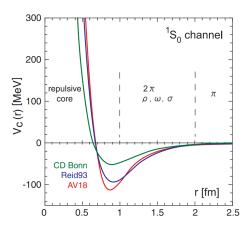
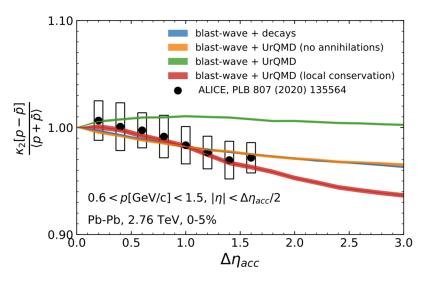


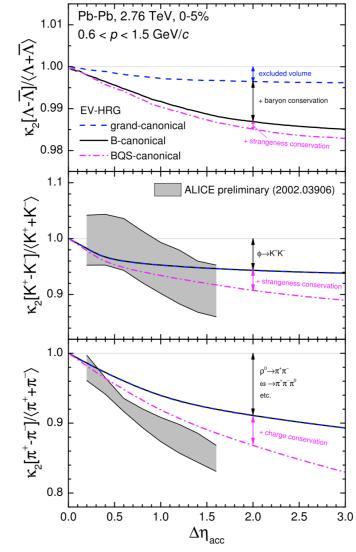
Figure from Ishii et al., PRL '07

- 3. Dynamical model calculations of critical fluctuations
 - Fluctuating hydrodynamics
 - Equation of state with tunable critical point [P. Parotto et al, Phys. Rev. C 101, 034901 (2020)] Under development within the Beam Energy Scan Theory (BEST) Collaboration

[X. An et al., Nucl. Phys. A 1017, 122343 (2022)]

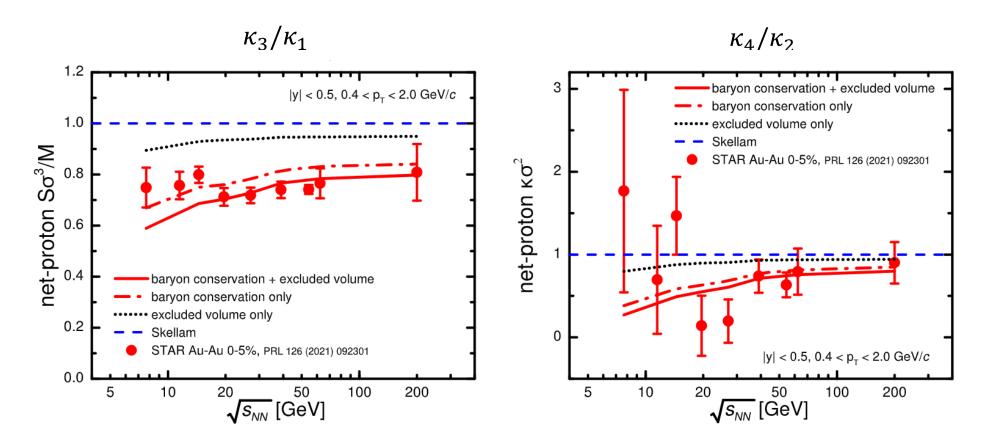

*J. Karthein, talk Tue 09:40

Hydrodynamics based analysis of (net-)particle fluctuations and constraints on the QCD critical point

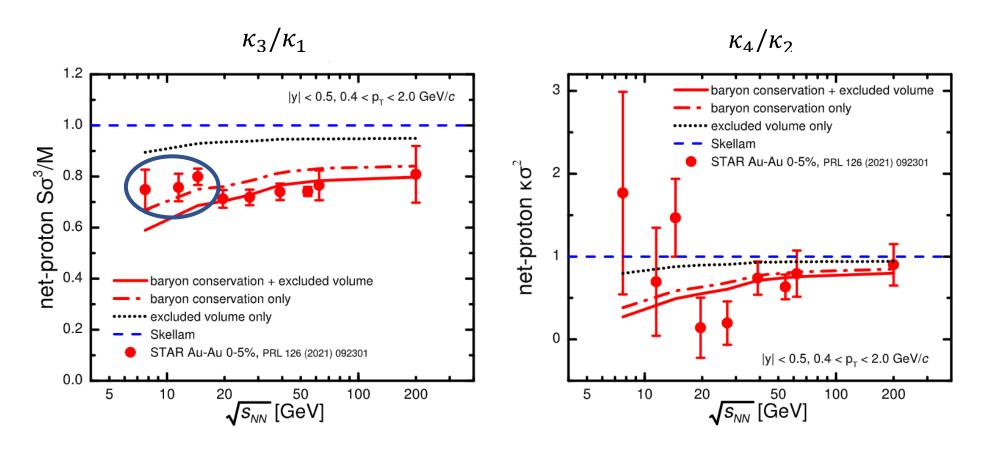

Net-particle fluctuations at the LHC

- Net protons described within errors and consistent with either
 - global baryon conservation without $B\bar{B}$ annihilations see e.g. ALICE Coll. arXiv:2206.03343
 - or local baryon conservation with $B\bar{B}$ annihilations

O. Savchuk et al., Phys. Lett. B 827, 136983 (2022)



Large effect from resonance decays for pions and kaons + exact conservation of electric charge/strangeness

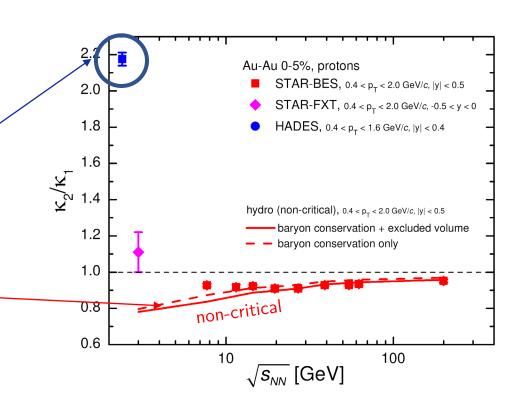

VV, Koch, Phys. Rev. C 103, 044903 (2021) 0

RHIC-BES: Net proton cumulant ratios (MUSIC)

- Data at $\sqrt{s_{NN}} \ge 20$ GeV consistent with non-critical physics (baryon conservation and repulsion)
- Effect from baryon conservation is larger than from repulsion
- Excess of skewness in data at $\sqrt{s_{NN}} < 20$ GeV hint of attractive interactions?

RHIC-BES: Net proton cumulant ratios (MUSIC)

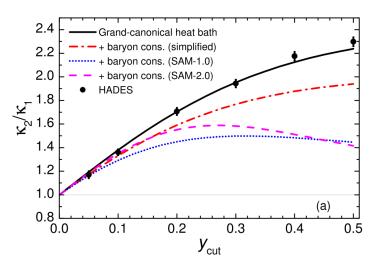
- Data at $\sqrt{s_{NN}} \ge 20$ GeV consistent with non-critical physics (baryon conservation and repulsion)
- Effect from baryon conservation is larger than from repulsion
- Excess of skewness in data at $\sqrt{s_{NN}} < 20$ GeV hint of attractive interactions?

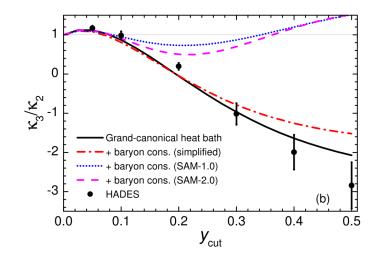

Second order proton cumulants and $\sqrt{s_{NN}} \le 7.7$ **GeV**

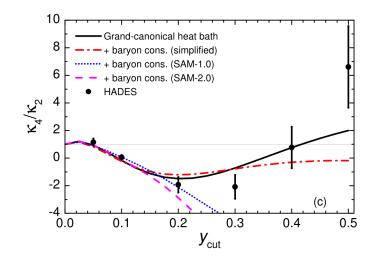
 Second order cumulants measured with much higher precision

Intriguing hint from HADES @ $\sqrt{s_{NN}}$ = 2.4 GeV: huge excess of two-proton correlations!

[HADES Collaboration, Phys. Rev. C 102, 024914 (2020)]


- No change of trend in the non-critical hydro
- Additional mechanisms:
 - Nuclear liquid-gas transition
 - Light nuclei formation
- Fill the gap with data from STAR-FXT (e.g. Phys.Rev.Lett. 128 (2022) 202303), future experiments like CBM-FAIR




- Fit baryon susceptibilities to data within a fireball model (Siemens-Rasmussen*)
- In the grand-canonical limit (no baryon conservation, small y_{cut}) the data are described well with

$$\frac{\chi_2^B}{\chi_1^B} = 9.35 \pm 0.40, \qquad \frac{\chi_3^B}{\chi_2^B} = -39.6 \pm 7.2, \qquad \frac{\chi_4^B}{\chi_2^B} = 1130 \pm 488 \qquad \text{i.e.} \qquad \left(\chi_4^B \gg -\chi_3^B \gg \chi_2^B \gg \chi_1^B\right)$$

- Could be indicative of a *critical point* near the HADES freeze-out at $T\sim70$ MeV, $\mu_B\sim875$ MeV
- However, the results for $y_{cut} > 0.2$ are challenging to describe with baryon conservation included

^{*}Fireball parameters from Harabasz et al., PRC 102 (2020) 054903 and Motornenko et al., PLB 822 (2021) 136703

Critical point particle number fluctuations from molecular dynamics

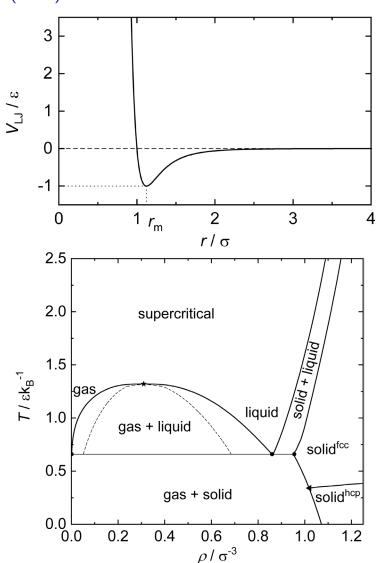
V.A. Kuznietsov, O. Savchuk, M.I. Gorenstein, V. Koch, VV, Phys. Rev. C 105, 044903 (2022)

Lennard-Jones fluid

S. Stephan, M. Thol, J. Vrabec, H. Hasse, Journal of Chemical Information and Modeling 59, 4248 (2019)

$$V_{
m LJ}(r) = 4arepsilon \left[\left(rac{\sigma}{r}
ight)^{12} - \left(rac{\sigma}{r}
ight)^{6}
ight]$$

Reduced variables:

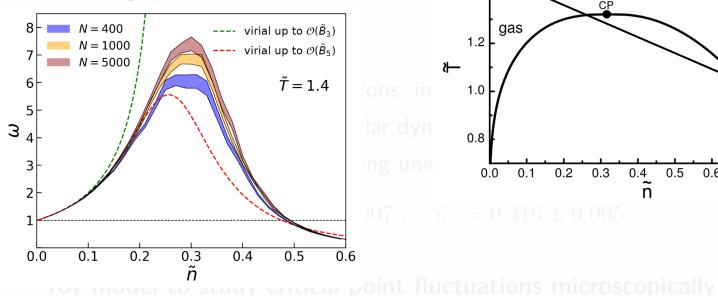

$$\tilde{r} = r/\sigma$$
 $\tilde{T} = T/(k_B \varepsilon)$ $\tilde{n} = n\sigma^3$

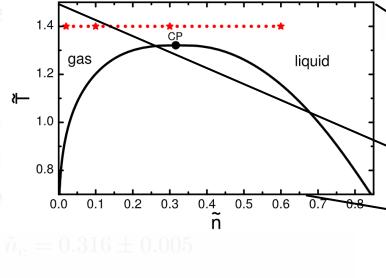
Properties:

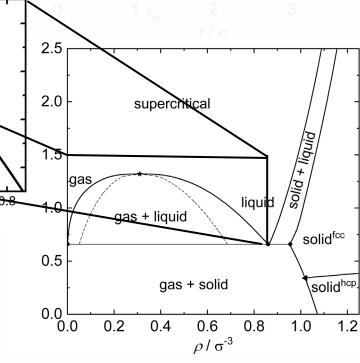
- Multiple phase transitions, including critical point
- Tractable with molecular dynamics simulations
- Critical point in 3D-Ising universality class at

$$\tilde{T}_c = 1.321 \pm 0.007$$
, $\tilde{n}_c = 0.316 \pm 0.005$

Toy model to study critical point fluctuations microscopically

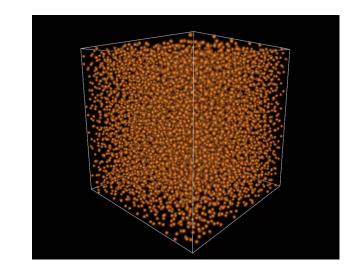



Lennard-Jones fluid


Study the supercritical isotherm $\tilde{T}=1.4=1.06~\tilde{T}_C$ in density range $0.05\tilde{n}_C<\tilde{n}<2\tilde{n}_C$

$$V_{
m LJ}(r) = 4arepsilon \, \left[\left(rac{\sigma}{r}
ight)^{12} - \left(rac{\sigma}{r}
ight)^{6}$$

Large fluctuations



Molecular dynamics setup

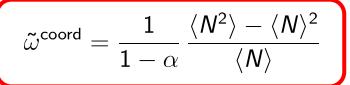
Newton's equations of motion (classical N-body problem)

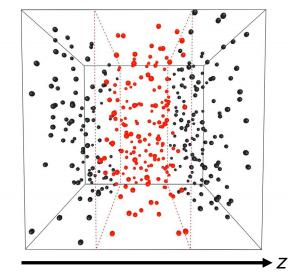
$$m\ddot{\mathbf{r}}_{\mathbf{i}} = -\sum_{j}
abla_{i} V_{\mathsf{LJ}}^{ij} (|\mathbf{r}_{\mathbf{i}} - \mathbf{r}_{\mathbf{j}}|)$$

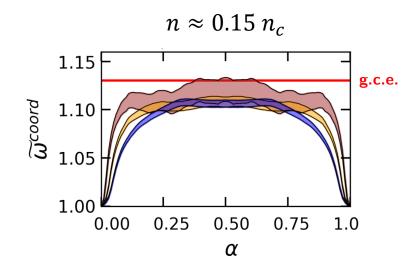
- Box simulation
 - Periodic boundary conditions
 - Minimum-image convention
- Microcanonical (UVN) and canonical-like (TVN) ensembles
- Observables as time averages $\langle A \rangle = \frac{1}{\tilde{\tau}} \int_{\tilde{t}_{eq}}^{\tilde{t}_{eq} + \tilde{\tau}} A(\{\tilde{\mathbf{r}}_i(\tilde{t}), \tilde{\mathbf{v}}_i(\tilde{t})\}) d\tilde{t}$

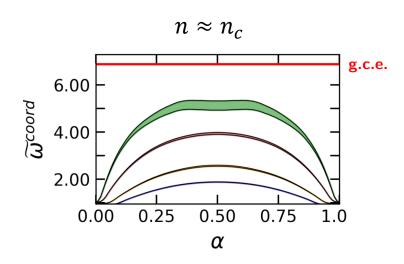
Implementation:

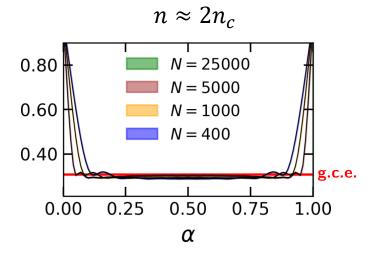
Velocity Verlet integration scheme implemented on CUDA-GPU (x100-200 speed-up*)


open source: https://github.com/vlvovch/lennard-jones-cuda




Fluctuations in molecular dynamics


Variance of conserved particle number distribution inside coordinate space subvolume $|z| < z^{max}$ as time average

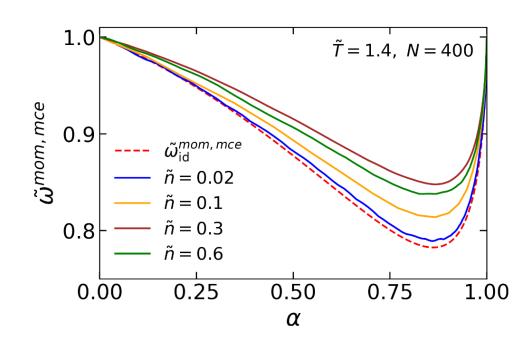

- $\langle N \rangle$, $\langle N^2 \rangle$ as time averages
- Microcanonical ensemble
- 1-a factor to cancel out global conservation
- $\widetilde{\omega}^{coord} \to \omega^{gce}$ expected as $\langle N \rangle \to \infty$

Fluctuations in molecular dynamics: momentum space

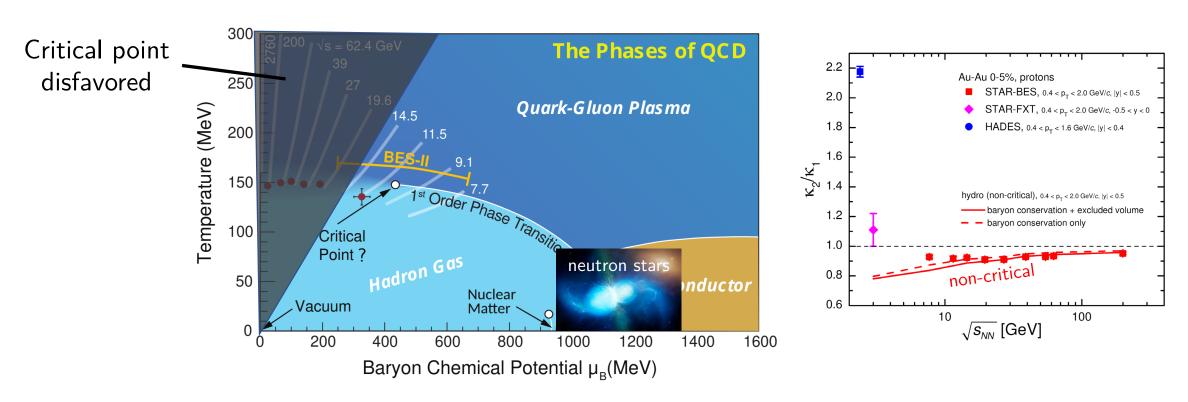
Experiments measure momenta, not coordinates → consider momentum space subvolume instead

$$|v_z| < v_z^{
m cut}$$
 (à la $|y| < y^{
m cut}$) $lpha = \langle N^{
m acc}
angle / N$

Ideal gas limit:
$$\tilde{\omega}_{\text{id}}^{\text{mom,mce}} = 1 - \frac{2[\text{erf}^{-1}(\alpha)]^2 e^{-2[\text{erf}^{-1}(\alpha)]^2}}{3\pi\alpha(1-\alpha)}$$


Large fluctuations near the CP are washed out when momentum cuts imposed instead of coordinates

NB: here no collective flow and expansion


Outlook:

- Collective flow and expansion, clustering
- Ensemble averaging instead of time averaging
- High-order cumulants

total energy conservation effect

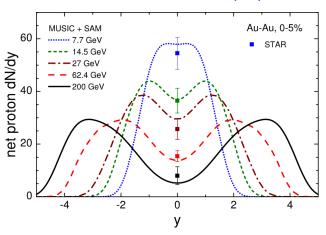
Summary: What we learned so far from fluctuations

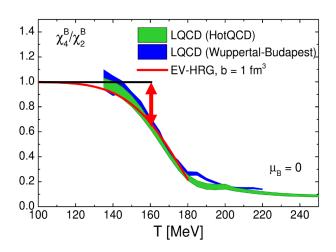
- Data at high energies $(\sqrt{s_{NN}} \ge 20 \text{ GeV})$ consistent with "non-critical" physics
- Interesting indications for (multi)-proton correlations at $\sqrt{s_{NN}} \le 7.7$ GeV
- Critical point: Promising developments in hydrodynamics and molecular dynamics

Thanks for your attention!

Backup slides

Hydrodynamic description

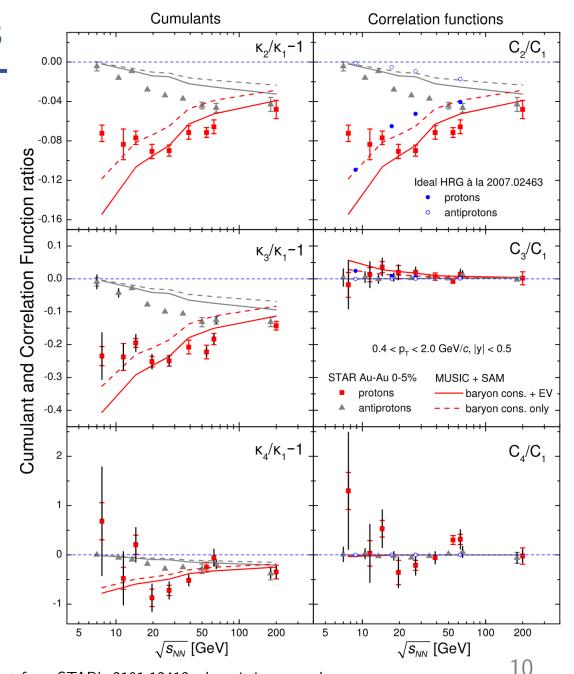

- Collision geometry based 3D initial state [Shen, Alzhrani, PRC '20]
 - Constrained to net proton distributions
- Viscous hydrodynamics evolution MUSIC-3.0
- (2)
- Energy-momentum and baryon number conservation
- NEOS-BSQ equation of state [Monnai, Schenke, Shen, PRC '19]
- Shear viscosity via IS-type equation
- Cooper-Frye particlization at $\epsilon_{sw} = 0.26 \; \text{GeV/fm}^3$


$$\omega_{p} \frac{dN_{j}}{d^{3}p} = \int_{\sigma(x)} d\sigma_{\mu}(x) p^{\mu} \frac{d_{j} \lambda_{j}^{\text{ev}}(x)}{(2\pi)^{3}} \exp\left[\frac{\mu_{j}(x) - u^{\mu}(x)p_{\mu}}{T(x)}\right].$$

- Particlization includes QCD-based baryon number distribution
 - Here incorporated via baryon excluded volume

[VV, Pasztor, Fodor, Katz, Stoecker, PLB 775, 71 (2017)]

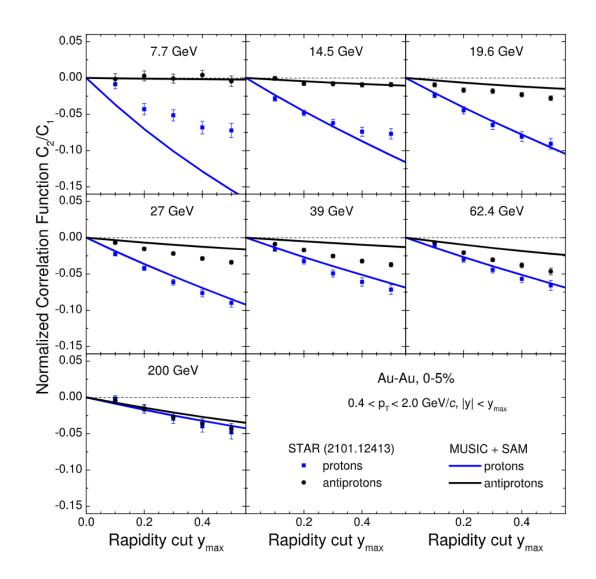
VV, C. Shen, V. Koch, in preparation



Cumulants vs Correlation Functions

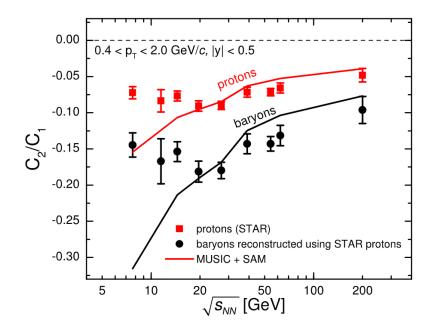
 Analyze genuine multi-particle correlations via factorial cumulants [Bzdak, Koch, Strodthoff, PRC '17]

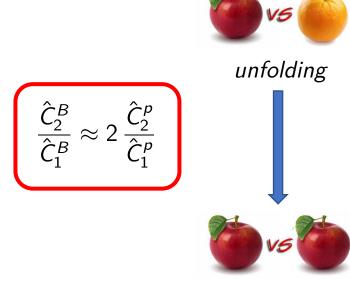
$$\hat{C}_1 = \kappa_1,$$
 $\hat{C}_3 = 2\kappa_1 - 3\kappa_2 + \kappa_3,$ $\hat{C}_2 = -\kappa_1 + \kappa_2,$ $\hat{C}_4 = -6\kappa_1 + 11\kappa_2 - 6\kappa_3 + \kappa_4.$

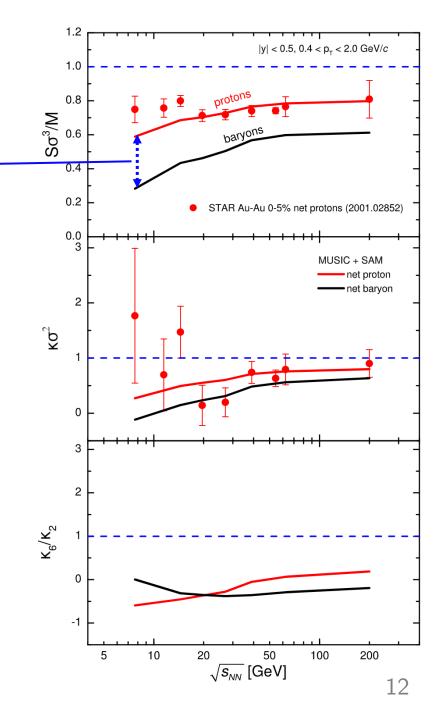

- Three- and four-particle correlations are small
 - Higher-order cumulants are driven by two-particle correlations
 - Small positive \hat{C}_3/\hat{C}_1 in the data is explained by baryon conservation + excluded volume
 - Strong multi-particle correlations would be expected near the critical point [Ling, Stephanov, 1512.09125]
- Two-particle correlations are negative
 - Protons at $\sqrt{s_{NN}} \le 14.5$ GeV overestimated
 - Antiprotons at $19.6 \le \sqrt{s_{NN}} \le 62.4$ GeV underestimated

*We use the notation for (factorial) cumulants from Bzdak et al., Phys. Rept. '20. This is different from STAR's 2101.12413 where it is reversed

Acceptance dependence of two-particle correlations


- Qualitative agreement with the STAR data
- Data indicate a changing y_{max} slope at $\sqrt{s_{NN}} \leq 14.5 \; {\rm GeV}$
- Volume fluctuations? [Skokov, Friman, Redlich, PRC '13]
 - Can improve low energies but spoil high energies?
- Exact electric charge conservation?
 - Worsens the agreement at $\sqrt{s_{NN}} \leq 14.5$, higher energies virtually unaffected (see backup)
- Attractive interactions?
 - Could work if baryon repulsion switches to attraction in the high- μ_B regime




Net baryon vs net proton

- net baryon ≠ net proton
- Baryon cumulants can be reconstructed from proton cumulants via binomial (un)folding based on isospin randomization [Kitazawa, Asakawa, Phys. Rev. C 85 (2012) 021901]
 - Requires the use of joint factorial moments, only experiment can do it model-independently

