# Equation of state of QCD matter within the Hagedorn bag-like model

Volodymyr Vovchenko

Goethe University Frankfurt & Frankfurt Institute for Advanced Studies

Based on Phys. Rev. C 99, 045204 (2019)

in collaboration with M.I. Gorenstein, C. Greiner, H. Stoecker

"Strangeness in Quark Matter 2019" Conference, Bari, Italy

June 10-15, 2019







## **QCD** equation of state



#### **Approaches:**

- Lattice parameterization,  $\mu_B = 0$  directly, small  $\mu_B$  through Taylor/fugacity expansion
- Merge models for hadronic and QGP phases, e.g. Maxwell construction (EOSQ) [Kolb, Sollfrank, Heinz, PRC '00], smooth switching function [Albright, Kapusta, Young, 1404.7540], etc.
- Effective models with hadronic and partonic degrees of freedom
   [Steinheimer et al., 1009.5239; Motornenko et al., 1905.00866; etc.]
   In most cases hadron-parton transition is put in "by hand"

R. Hagedorn (1965): Statistical Bootstrap Model, fireballs consist of fireballs  $\rho(m) = A \, m^{-\alpha} \exp(m/T_H)$ 



- Fast equilibration of hadrons in HICs [Noronha-Hostler et al., PRL '08; PRC '10], an alternative to strings in transport codes [Beitel, Greiner, Stoecker, PRC '16], thermal distribution of hadrons as a consequence of decaying heavy Hagedorns [Beitel, Gallmeister, Greiner, PRC '14]
- Transport coefficients around  $T_{pc}$  [Noronha-Hostler, Noronha, Greiner, PRL '09]

### Hagedorn bag-like model

An analytic model of a (phase) transition between hadronic matter and QGP [Gorenstein, Petrov, Zinovjev, PLB '81; Gorenstein, W. Greiner, Yang, JPG '98]

- Statistical mechanics of colorless quark-gluon bags (single partition function)
- Hagedorn spectrum from MIT bag model  $\rho(m) = A m^{-\alpha} \exp(m/T_H)$
- Compressible bags with finite eigenvolumes  $V \rightarrow V bN$ eliminates the "limiting" temperature





QGP with MIT bag model

 $p=\frac{\sigma_Q}{3}T^4-B$ 

#### **Crossover transition: Prior studies**

First quantitative analysis performed in [L. Ferroni, V. Koch, PRC 79, 034905 (2009)] for the crossover scenario



Crossover transition in bag-like model qualitatively compatible with LQCD quantitatively... not so much

#### **Model implementation**

Thermodynamic system of known hadrons and quark-gluon bags

**Mass-volume density:**  $\rho(m, v; \lambda_B, \lambda_Q, \lambda_S) = \rho_H + \rho_Q$ 

 $\rho_{H} = \sum_{i \in \text{HRG}} \lambda_{B}^{b_{i}} \lambda_{Q}^{q_{i}} \lambda_{S}^{s_{i}} d_{i} \delta(m - m_{i}) \delta(v - v_{i}) \quad \text{PDG hadrons}$ 



$$\rho_{Q} = C v^{\gamma} (m - Bv)^{\delta} \exp \left\{ \frac{4}{3} [\sigma_{Q}(\lambda_{B}, \lambda_{Q}, \lambda_{S})]^{1/4} v^{1/4} (m - Bv)^{3/4} \right\} \theta(v - V_{0}) \theta(m - Bv - M_{0}).$$
Quark-gluon bags [J. Kapusta, PRC '81; Gorenstein+, ZPC '84]

Excluded volume  $\rightarrow$  isobaric (pressure) ensemble [Gorenstein, Petrov, Zinovjev, PLB '81]  $\hat{Z}(T, s, \lambda_B, \lambda_Q, \lambda_S) = \int_0^\infty Z(T, V, \lambda_B, \lambda_Q, \lambda_S) e^{-sV} dV = [s - f(T, s, \lambda_B, \lambda_Q, \lambda_S)]^{-1}$  $f(T, s, \lambda_B, \lambda_Q, \lambda_S) = \int dv \int dm \rho(m, v; \lambda_B, \lambda_Q, \lambda_S) \phi(T, m) e^{-sv}$ 

The system pressure is  $p = Ts^*$  with  $s^*$  being the *rightmost* singularity of  $\hat{Z}$ 

#### **Crossover transition**

Type of transition is determined by exponents  $\gamma$  and  $\delta$  of the bag spectrum

Crossover seen in lattice, realized in model for  $\gamma + \delta \ge -3$  and  $\delta \ge -7/4$ , the rightmost singularity is a pole singularity,  $s^* = f(T, s^*)$ [Begun, Gorenstein, W. Greiner, JPG '09]

#### Transcendental equation for pressure:

$$p(T, \lambda_B, \lambda_Q, \lambda_S) = T \sum_{i \in \text{HRG}} d_i \, \phi(T, m) \, \lambda_B^{b_i} \, \lambda_Q^{q_i} \, \lambda_S^{s_i} \, \exp\left(-\frac{m_i p}{4BT}\right) \\ + \frac{C}{\pi} \, T^{5+4\delta} \, [\sigma_Q]^{\delta+1/2} \, [B + \sigma_Q T^4]^{3/2} \, \left(\frac{T}{p - p_B}\right)^{\gamma+\delta+3} \, \Gamma\left[\gamma + \delta + 3, \frac{(p - p_B)V_0}{T}\right] \\ \text{Solved numerically}$$

**Calculation setup:** 

$$\gamma = 0, \quad -3 \le \delta \le -\frac{1}{2}, \quad B^{1/4} = 250 \text{ MeV}, \quad C = 0.03 \text{ GeV}^{-\delta+2}, \quad V_0 = 4 \text{ fm}^3$$
crossover
$$T_H = \left(\frac{3B}{\sigma_Q}\right)^{1/4} \simeq 165 \text{ MeV}$$
Hagedorn temperature

## **Thermodynamic functions**



- Crossover transition towards bag model equation of state
- Dependence on  $\delta$  is mild
- Approach to the Stefan-Boltzmann limit is too fast
- Peak in energy density, not seen on the lattice

#### Overall consistent with Ferroni-Koch results

#### **Conserved charges susceptibilities**

$$\chi_{Imn}^{BSQ} = \frac{\partial^{I+m+n} p/T^4}{\partial (\mu_B/T)^I \partial (\mu_S/T)^m \partial (\mu_Q/T)^n}$$

Available from lattice QCD, not considered in this type of model before



Qualitatively compatible with lattice QCD

#### Bag model with massive quarks

The main source of quantitative disagreement is the inaccuracy of the standard MIT bag model with massless quarks for describing QGP

*Quasiparticle models* suggest sizable thermal masses of quarks and gluons in high-temperature QGP [Peshier et al., PLB '94; PRC '00; PRC '02]

**Heavy-bag model:** bag model EoS with non-interacting *massive* quarks and gluons and the bag constant [Ivanov et al., PRC 72, 025804 (2005)]

Massive quarks and gluons instead of massless ones:

$$\begin{aligned} \sigma_Q(T,\lambda_B,\lambda_Q,\lambda_S) &= \frac{8}{\pi^2 T^4} \int_0^\infty dk \frac{k^4}{\sqrt{k^2 + m_g^2}} \left[ \exp\left(\frac{\sqrt{k^2 + m_g^2}}{T}\right) - 1 \right]^{-1} \\ &+ \sum_{f=u,d,s} \frac{3}{\pi^2 T^4} \int_0^\infty dk \frac{k^4}{\sqrt{k^2 + m_f^2}} \left[ \lambda_f^{-1} \exp\left(\frac{\sqrt{k^2 + m_f^2}}{T}\right) + 1 \right]^{-1} \\ &+ \sum_{f=u,d,s} \frac{3}{\pi^2 T^4} \int_0^\infty dk \frac{k^4}{\sqrt{k^2 + m_f^2}} \left[ \lambda_f \exp\left(\frac{\sqrt{k^2 + m_f^2}}{T}\right) + 1 \right]^{-1} \end{aligned}$$

#### Hagedorn model with massive quarks

Introduction of constituent masses leads to much better description of QGP



#### Parameters for the crossover model:

 $m_u = m_d = 300 \text{ MeV}, \quad m_s = 350 \text{ MeV}, \quad m_g = 800 \text{ MeV}, \quad B^{1/4} = 200 \text{ MeV}$  $\gamma = 0, \quad \delta = -2, \quad C = 0.03, \quad V_0 = 8 \text{ fm}^3$  $T_H \simeq 167 \text{ MeV}$ 

#### Hagedorn model with massive quarks

Introduction of constituent masses leads to much better description of QGP



#### Parameters for the crossover model:

 $m_u = m_d = 300 \text{ MeV}, \quad m_s = 350 \text{ MeV}, \quad m_g = 800 \text{ MeV}, \quad B^{1/4} = 200 \text{ MeV}$  $\gamma = 0, \quad \delta = -2, \quad C = 0.03, \quad V_0 = 8 \text{ fm}^3$  $T_H \simeq 167 \text{ MeV}$ 

## 2<sup>nd</sup> order susceptibilities



#### Higher-order susceptibilities and Fourier coefs.



Lattice data from 1805.04445 & 1708.02852 (Wuppertal-Budapest), 1701.04325 (HotQCD)

### **Chiral transition**

Picture: bag interior is chirally restored, vacuum is chirally broken



Lattice data from 1005.3508 (Wuppertal-Budapest), see also 1111.1710 (HotQCD)

#### Finite baryon density and phase structure



- Crossover transition to a QGP-like phase in both the T and  $\mu_B$  directions
- Essentially a built-in "switching" function between HRG and QGP, thermodynamically consistent by construction (single partition function)
- Three conserved charges:  $\mu_B, \mu_Q, \mu_S$

#### Finite baryon density and phase structure



• Crossover transition to a QGP-like phase in both the T and  $\mu_B$  directions

- Essentially a built-in "switching" function between HRG and QGP, thermodynamically consistent by construction (single partition function)
- Three conserved charges:  $\mu_B$ ,  $\mu_Q$ ,  $\mu_S$

**Outlook:** Critical point/phase transition at finite  $\mu_B$  can be incorporated through  $\mu_B$ -dependence of  $\gamma$  and  $\delta$  exponents in the bag spectrum, then predict signatures as in Gorenstein, Gazdzicki, Greiner, Phys. Rev. C (2005)

## Summary

- Hagedorn bag-like model with quasiparticle-type parton masses provides a reasonable description of hadron-QGP crossover within a single partition function. Includes three conserved charges and thus suitable for heavy-ion collisions.
- Inclusion of exponentially increasing Hagedorn states as well as excluded volume interactions are in line with various high order susceptibilities of lattice QCD
- Pure crossover scenario consistent with the present lattice data. Adjusting parameters for a hypothetical critical point at finite baryon density to predict its signatures.

## Summary

- Hagedorn bag-like model with quasiparticle-type parton masses provides a reasonable description of hadron-QGP crossover within a single partition function. Includes three conserved charges and thus suitable for heavy-ion collisions.
- Inclusion of exponentially increasing Hagedorn states as well as excluded volume interactions are in line with various high order susceptibilities of lattice QCD
- Pure crossover scenario consistent with the present lattice data. Adjusting parameters for a hypothetical critical point at finite baryon density to predict its signatures.

#### **Thanks for your attention!**

## Backup slides

#### Hagedorn bag-like model: formulation

- HRG + quark-gluon bags  $\rho_Q(m, v) = C v^{\gamma} (m Bv)^{\delta} \exp \left\{ \frac{4}{3} [\sigma_Q]^{1/4} v^{1/4} (m Bv)^{3/4} \right\}$
- Non-overlapping particles (excluded volume correction)
- Isobaric (pressure) ensemble  $(T, V, \mu) \rightarrow (T, s, \mu)_{10^{25}}$
- *Massive* (thermal) partons (new element)

**Resulting picture:** transition (crossover, 1<sup>st</sup> order, 2<sup>nd</sup> order, etc.) between HRG and MIT bag model EoS, within single partition function





 $V \rightarrow V - bN$ 

"Crossover" parameter set

| $\gamma=$ 0, | $\delta = -2,$        | C = 0    | 0.03,                   | $V_0 = 8 \text{ fm}^3$ |
|--------------|-----------------------|----------|-------------------------|------------------------|
| $m_u = 1$    | $m_{d} = 300$         | MeV,     | <i>m</i> <sub>s</sub> = | = 350 MeV              |
| $m_g$        | = 800 Me <sup>v</sup> | $V, B^1$ | $^{4} =$                | 200 MeV                |

 $T_H \simeq 167 \,\,\mathrm{MeV}$ 

#### Hagedorn bag-like model: mass spectrum



#### **Cluster expansion in fugacities**

Expand in fugacity  $\lambda_B = e^{\mu_B/T}$  instead of  $\mu_B/T$  – a relativistic analogue of Mayer's cluster expansion:

$$\frac{p(T,\mu_B)}{T^4} = \frac{1}{2} \sum_{k=-\infty}^{\infty} p_{|k|}(T) e^{k\mu_B/T} = \frac{p_0(T)}{2} + \sum_{k=1}^{\infty} p_k(T) \cosh(k\mu_B/T)$$

Net baryon density: 
$$rac{
ho_B(T,\mu_B)}{T^3} = \sum_{k=1}^{\infty} b_k(T) \sinh(k\mu_B/T)$$
,  $b_k \equiv kp_k$ 

Analytic continuation to imaginary  $\mu_B$  yields trigonometric Fourier series

$$\frac{\rho_B(T, i\tilde{\mu}_B)}{T^3} = i \sum_{k=1}^{\infty} b_k(T) \sin\left(\frac{k\tilde{\mu}_B}{T}\right)$$
  
with Fourier coefficients  $b_k(T) = \frac{2}{\pi T^4} \int_0^{\pi T} d\tilde{\mu}_B [\operatorname{Im} \rho_B(T, i\tilde{\mu}_B)] \sin(k\tilde{\mu}_B/T)$ 

Four leading coefficients  $b_k$  computed in LQCD at the physical point [V.V., A. Pasztor, Z. Fodor, S.D. Katz, H. Stoecker, 1708.02852]

#### **HRG** with repulsive baryonic interactions

Repulsive interactions with excluded volume (EV)  $V \rightarrow V - bN$ [Hagedorn, Rafelski, '80; Dixit, Karsch, Satz, '81; Cleymans et al., '86; Rischke et al., Z. Phys. C '91]



- Non-zero  $b_k(T)$  for  $k \ge 2$  signal deviation from ideal HRG
- EV interactions between baryons ( $b \approx 1 \text{ fm}^3$ ) reproduce lattice trend

#### Hagedorn resonance gas

HRG + exponential Hagedorn mass spectrum, e.g. as obtained from the bootstrap equation [Hagedorn '65; Frautschi, '71]



If Hagedorns are point-like,  $T_H$  is the limiting temperature



Laplace's method accurate within 1-2%, the value of  $M_0$  is all but irrelevant

#### From limiting temperature to crossover

- A gas of extended objects → excluded volume
- Exponential spectrum of *compressible* QGP bags
- Both phases described by single partition function [Gorenstein, Petrov, Zinovjev, PLB '81; Gorenstein, W. Greiner, Yang, JPG '98; I. Zakout et al., NPA '07]



[Ferroni, Koch, PRC 79, 034905 (2009)]

Crossover transition in bag-like model qualitatively compatible with LQCD

#### Mechanism for transition to QGP

The isobaric partition function,  $\hat{Z}(T, s, \lambda) = [s - f(T, s, \lambda)]^{-1}$ , has

- pole singularity  $s_H = f(T, s_H, \lambda)$  "hadronic" phase
- singularity  $s_B$  in the function  $f(T, s, \lambda)$  due to the exponential spectrum





- Bags occupy almost whole space at large temperatures
- Strongest changes take place in the vicinity of  $T_H$
- At  $\delta < -7/4$  and  $T \rightarrow \infty$  whole space large bags with QGP

#### Hagedorn model: Thermodynamic functions



#### Hagedorn model: Baryon-strangeness ratio



Consistent with lattice QCD

#### Hagedorn model: Higher-order susceptibilities

Higher-order susceptibilities are particularly sensitive probes of the partonhadron transition and possible remnants of criticality at  $\mu_B = 0$ 



- Drop of  $\chi_4^B/\chi_2^B$  caused by repulsive interactions which ensure crossover transition to QGP
- Peak in  $\chi_4^S/\chi_2^S$  is an interplay of the presence of multi-strange hyperons and repulsive interactions