

Statistical-thermal model: Applications using Thermal-FIST

Volodymyr Vovchenko

Goethe University Frankfurt & Frankfurt Institute for Advanced Studies

3rd EMMI Workshop: Anti-matter, hyper-matter and exotica production at the LHC

December 2, 2019

1. Short description of **Thermal-FIST**

- 2. Recent applications to light nuclei and exotica
 - Canonical suppression
 - The Saha equation approach
 - Feeddown contributions from excited nuclear states
- 3. Summary

HRG: Equation of state of hadronic matter as a multi-component (non-)interacting gas of known hadrons, resonances, and *light nuclei*

$$\ln Z \approx \sum_{i \in M,B} \ln Z_i^{id} = \sum_{i \in M,B} \frac{d_i V}{2\pi^2} \int_0^\infty \pm p^2 dp \ln \left[1 \pm \exp\left(\frac{\mu_i - E_i}{T}\right) \right]$$

Grand-canonical ensemble: $\mu_i = b_i \mu_B + q_i \mu_Q + s_i \mu_S$ **chemical equilibrium**

Thermal-FIST

Thermal-FIST* (a.k.a. FIST or FAUST)

open source: https://github.com/vlvovch/Thermal-FIST

reference: V.V., H. Stoecker, Computer Physics Communications 244, 295 (2019)

cle list file:	C:/FIS	T/PDG	2014/list-with	hnuclei.dat																				Load p	article list	Load	de l
ermal mod	lel T	hermal	fits Equat	tion of state	E	vent gener	ator Pa	rticle	list editor																		
ta to fit:													Hint: do	uble-clid	k on yiel	d to edit	HRG	model o	configu	ration:							
Nan	ne	Fit?	Exp. value	Exp. erro	r Mo	del value	Deviation	n D	Data/Model	F	eeddow	n				^	Mod	el: Idea	al 👘			-	Ensen	nble: Gr	and-cano	nical	
pi+		\checkmark	669.5	48	605	.439	-1.33461	1.1	106 ± 0.07	9 Stron	g+EM d	ecays					Stat	istics: 〇	Boltzn	nann (Quant	tum fo	r All pa	rticles	• 🗸 U	se quadr	ratu
pi-		\checkmark	668	47	605	.474	-1.33034	1.1	103 ± 0.07	8 Stron	g+EM d	ecays															
K+		\checkmark	100	8	108	.722	1.09024	0.9	920 ± 0.07	4 Stron	g+EM d	ecays					Resonance widths: ebw •										
К-		\checkmark	99.5	8.5	108	.657	1.07724	0.9	916 ± 0.07	B Stron	g+EM d	ecays					Cor	iservatio	n laws.	E	V/vdW i	interacti	ions	Othe	r options.		
р		\checkmark	31.5	2.5	33.4	4123	0.764917	0.9	943 ± 0.07	5 Stron	g+EM d	ecays					Fit p	aramete	rs:								
anti-p		\checkmark	30.5	2.5	33.2	2773	1.11091	0.9	917 ± 0.07	5 Stron	g+EM d	ecays					Pa	rameter	Fit?	Initia	al value	Min v	/alue	Max valı	Je		
Lambda		\checkmark	24	2.5	19.3	3002	-1.87991	1.2	244 ± 0.13	0 Stron	g+EM d	ecays				~	т (Г	MeV)	\checkmark	155		20	5	00			
dd quantity	to fit	Remo	ove selected	quantity fro	m fit	Load data	a from file.	Si	ave data to	file							R (f	m)	\checkmark	8		0	2	5			
tracted para	ameters	:															μВ	(MeV)	\checkmark	0		-100	9	00			
Parameter	V	/alue	Error	🖗 Ther	mal fit	result																	-		×		
(MeV)	154.	766	1.19547										D	ata/N	1odel												
3 (MeV)	0.32	3424	3.94532	2.5																					-		
7	1																								T	-	
5	1			2																		-		T			
(fm)	10.5	875	0.263019	1.5						т	т			-	т								Τ				
(fm^3)	4971	.27	370.495	1	Ŧ	Ŧ				1	1	Ŧ	Ţ	•	•	-	T	-	- T	I			•	•			
i2/dof	26.0	516/19					I I		- I							-	I	1	t	I	•		1				
ts: Yie	elds	Devia	tions Data/	/M																	-			T	-		
uation of s	state	Chi2 n	rofile		п+	п- k	+ κ-	r	n n	^	<u>_</u>	=-	=-	0	0	K05 (ت ۵(1020)	d	đ	³ He	³ He	знл	знл	⁴He	4He		

A framework for general-purpose statistical-thermal model applications

*Thermal, Fast and Interactive Statistical Toolkit

Using Thermal-FIST

The package is cross-platform (Linux, Mac, Windows, Android) Installation using **git** and **cmake**

```
# Clone the repository from GitHub
git clone https://github.com/vlvovch/Thermal-FIST.git
cd Thermal-FIST
# Create a build directory, configure the project with cmake
# and build with make
mkdir build
cd build
cmake ../
make
# Run the GUI frontend
./bin/QtThermalFIST
# Run the test calculations from the paper
./bin/examples/cpc1HRGTDep
./bin/examples/cpc2chi2
./bin/examples/cpc3chi2NEQ
./bin/examples/cpc4mcHRG
```

GUI requires free Qt5 framework, the rest of the package has no external dependencies Quick start guide Documentation Physics manual

- Extensions of the HRG model
 - finite resonance widths
 - repulsive (excluded volume) and van der Waals (*criticality*) interactions
 - particle number fluctuations and correlations
 - chemical non-equilibrium (γ_q, γ_s) a la Rafelski
 - unstable nuclear fragments
- Equation of state
- Canonical statistical model (CSM)
 - (local) (selective) exact conservation of conserved charges
 - canonical suppression of light nuclei
- Monte Carlo generator (Blast-wave, canonical ensemble,...)
- Hadronic phase and dynamical freeze-out
 - partial chemical equilibrium
 - suppression of resonance yields
 - evolution of light nuclei abundances via the Saha equation

• Extensions of the HRG model

- finite resonance widths
- repulsive (excluded volume) and van der Waals (*criticality*) interactions
- particle number fluctuations and correlations
- chemical non-equilibrium (γ_q, γ_s) a la Rafelski
- unstable nuclear fragments
- Equation of state
- Canonical statistical model (CSM)
 - (local) (selective) exact conservation of conserved charges
 - canonical suppression of light nuclei
- Monte Carlo generator (Blast-wave, canonical ensemble,...)
- Hadronic phase and dynamical freeze-out
 - partial chemical equilibrium
 - suppression of resonance yields
 - evolution of light nuclei abundances via the Saha equation

Canonical suppression of light nuclei at the LHC

Multiplicity dependence of hadrochemistry

Canonical statistical model (CSM)

Exact conservation of *B*, *Q*, *S* in a correlation volume *V*_C [Rafelski, Danos, et al., PLB '80; Hagedorn, Redlich, ZPC '85] $\mathcal{Z}(B,Q,S) = \int_{-\pi}^{\pi} \frac{d\phi_B}{2\pi} \int_{-\pi}^{\pi} \frac{d\phi_Q}{2\pi} \int_{-\pi}^{\pi} \frac{d\phi_S}{2\pi} e^{-i(B\phi_B + Q\phi_Q + S\phi_S)} \exp\left[\sum_j z_j^1 e^{i(B_j\phi_B + Q_j\phi_Q + S_j\phi_S)}\right]$ $z_j^1 = V_c \int dm \rho_j(m) d_j \frac{m^2 T}{2\pi^2} K_2(m/T) \qquad \langle N_j^{\text{prim}} \rangle^{\text{ce}} = \frac{Z(B - B_j, Q - Q_j, S - S_j)}{Z(B, Q, S)} \langle N_j^{\text{prim}} \rangle^{\text{gce}}$

[Becattini et al., ZPC '95, ZPC '97]

Implemented in Thermal-FIST for a full HRG

Canonical statistical model (CSM)

Exact conservation of *B*, *Q*, *S* in a correlation volume V_{C} [Rafelski, Danos, et al., PLB '80; Hagedorn, Redlich, ZPC '85] $\mathcal{Z}(B,Q,S) = \int_{-\pi}^{\pi} \frac{d\phi_B}{2\pi} \int_{-\pi}^{\pi} \frac{d\phi_Q}{2\pi} \int_{-\pi}^{\pi} \frac{d\phi_S}{2\pi} e^{-i(B\phi_B + Q\phi_Q + S\phi_S)} \exp\left[\sum_{j} z_j^1 e^{i(B_j\phi_B + Q_j\phi_Q + S_j\phi_S)}\right]$ $z_j^1 = V_c \int dm \rho_j(m) d_j \frac{m^2 T}{2\pi^2} K_2(m/T) \qquad \langle N_j^{\text{prim}} \rangle^{\text{ce}} = \frac{Z(B - B_j, Q - Q_j, S - S_j)}{Z(B, Q, S)} \langle N_j^{\text{prim}} \rangle^{\text{gce}}$ [Becattini et al., ZPC '95, ZPC '97] Implemented in Thermal-FIST for a full HRG

Exact conservation around midrapidity, $V_C = k dV/dy$. How large is k?

Canonical statistical model (CSM)

Exact conservation of *B*, *Q*, *S* in a correlation volume *V*_C [Rafelski, Danos, et al., PLB '80; Hagedorn, Redlich, ZPC '85] $\mathcal{Z}(B,Q,S) = \int_{-\pi}^{\pi} \frac{d\phi_B}{2\pi} \int_{-\pi}^{\pi} \frac{d\phi_Q}{2\pi} \int_{-\pi}^{\pi} \frac{d\phi_S}{2\pi} e^{-i(B\phi_B + Q\phi_Q + S\phi_S)} \exp\left[\sum_j z_j^1 e^{i(B_j\phi_B + Q_j\phi_Q + S_j\phi_S)}\right]$ $z_j^1 = V_c \int dm \rho_j(m) d_j \frac{m^2 T}{2\pi^2} K_2(m/T) \qquad \langle N_j^{\text{prim}} \rangle^{\text{ce}} = \frac{Z(B - B_j, Q - Q_j, S - S_j)}{Z(B, Q, S)} \langle N_j^{\text{prim}} \rangle^{\text{gce}}$ [Becattini et al., ZPC '95, ZPC '97] *Implemented in Thermal-FIST for a full HRG*

Exact conservation around midrapidity, $V_C = k dV/dy$. How large is k?

Net-proton fluctuations affected by baryon number conservation [Braun-Munzinger, Rustamov, Stachel, 1612.00702]

$$rac{\kappa_2(\mathsf{p}-ar{\mathsf{p}})}{\langle\mathsf{p}
angle+\langlear{\mathsf{p}}
angle}\simeq 1-rac{\langle\mathsf{p}
angle}{k\,dN_B/dy}$$

Using ALICE data for net-p fluctuations [1910.14396] one obtains $k \sim 3-4$ for most centrality bins in Pb-Pb collisions [V.V., Dönigus, Stoecker, 1906.03145, PRC '19]

"Vanilla" CSM

 $T_{ch} = 155$ MeV, $V_C = 3dV/dy$, multiplicity dependence driven by V_C only

[V.V., Dönigus, Stoecker, 1808.05245, PLB '18] 0.006 ما ³He / p CSM (Thermal-FIST) CSM (Thermal-FIST) (b) (a) <u>l</u> + d) / d) / b2 10 T = 155 MeV, V = dV/dy $T = 155 \text{ MeV}, V_o = dV/dy$ = 155 MeV, V = 3 dV/dy 55 MeV, V = 3 dV/dy T = 170 MeV, V = dV T = 170 MeV, V = dV/dy 10-5 0.003 10⁻⁶ 0.002 ALICE, Pb-Pb, $\sqrt{s_{NN}} = 2.76 \text{ TeV}$ ALICE, pp INEL, $\sqrt{s} = 900 \text{ GeV}$ 0.001 10-7 ALICE, 2^{3} He / (p + \overline{p}), Pb-Pb $\sqrt{s_{NN}} = 2.76$ TeV ALICE, 2^{3} He / (p + \overline{p}), pp INEL $\sqrt{s} = 7$ TeV ALICE, pp INEL, Vs = 2.76 TeV ALICE, pp INEL, \s = 7 TeV 10³ 10^{2} 10² 10³ 10 10 dN_{π}/dy dN_{π}/dy $^{3}_{\Lambda}$ H / p ⁴He / p CSM (Thermal-FIST) CSM (Thermal-FIST) (c) (d) - T = 155 MeV, V = dV/dy = 155 MeV, V_ = dV/dy 10 = 155 MeV, V = 3 dV/d $MeV, V_{a} = 3 dV/dy$ $T = 170 \text{ MeV}, V_{2} = dV/dy$ 10⁻⁸ 10^{-6} 10⁻⁹ 10-7 10⁻¹⁰ ■ALICE, BR = 25 %, Pb-Pb √s_{NN} = 2.76 TeV • ALICE, Pb-Pb $\sqrt{s_{NN}}$ = 2.76 TeV 10⁻⁸ 10⁻¹ 10³ 10² 10² 10^{3} 10 10 10 dN_{π}/dy dN_{π}/dy

 $T_{ch} = 155$ MeV, $V_C = 3dV/dy$, multiplicity dependence driven by V_C only [V.V., Dönigus, Stoecker, 1808.05245, PLB '18]

Basic CSM appears to capture trends seen in light nuclei production data

Canonical suppression affects not only nuclei, but also the p/ π ratio

The effect for p/π is generally milder than d/p, but not insignificant

"Vanilla" CSM: nuclei vs p/π ratio

Canonical suppression affects not only nuclei, but also the p/ π ratio

The effect for p/π is generally milder than d/p, but not insignificant

 p/π suppression predicted by vanilla CSM not supported by the data

Full CSM

Full CSM: allow for multiplicity-dependent T_{ch} [V.V., Dönigus, Stoecker, 1906.03145, PRC '19]

Full CSM

Full CSM: allow for multiplicity-dependent T_{ch} [V.V., Dönigus, Stoecker, 1906.03145, PRC '19]

Full CSM

Full CSM: allow for multiplicity-dependent T_{ch} [V.V., Dönigus, Stoecker, 1906.03145, PRC '19]

Full CSM: d/p

$T_{ch} \nearrow \implies d/p \nearrow$

Full CSM: d/p

Excluded volume (schematic): $N_i \rightarrow N_i \exp\left(-\frac{v_i p}{T}\right) \implies d/p \searrow$

Simultaneous description of light nuclei and p/π ratio remains challenging

 $CSM: S_3$

Different versions of CSM give similar predictions, mild increase of S_3 due to baryon and strangeness conservation

 $CSM: S_3$

Different versions of CSM give similar predictions, mild increase of S_3 due to baryon and strangeness conservation

Coalescence [Sun, Dönigus, Ko, PLB '19] predicts opposite trend

Hadronic phase and the Saha equation approach to light nuclei production

V.V., K. Gallmeister, J. Schaffner-Bielich, C. Greiner, 1903.10024, PLB (in print)

Hadronic phase in central HICs

- At $T_{ch} \approx 150 160$ MeV inelastic collisions cease, yields of hadrons frozen
- Kinetic equilibrium maintained down to $T_{kin} \approx 100 120$ MeV through (pseudo-)elastic scatterings

[e.g., E. Shuryak, Rev. Mod. Phys. 89, 035001 (2017)]

Big Bang vs "Little Bangs"

- Hadrons (nucleons) form and "freeze-out" chemically before nuclei
- Bosons (photons or pions) catalyse nucleosynthesis

e.g. $p + n \leftrightarrow d + \gamma$ vs $p + n + \pi \leftrightarrow d + \pi$

17

Saha equation: $\mu_A = \sum_i \mu_{A_i}$, e.g. $\mu_d = \mu_p + \mu_n$, $\mu_{3_{He}} = 2\mu_p + \mu_n$, ...

Partial chemical equilibrium (PCE)

Expansion of hadron resonance gas in partial chemical equilibrium at $T < T_{ch}$ [H. Bebie, P. Gerber, J.L. Goity, H. Leutwyler, Nucl. Phys. B '92; C.M. Hung, E. Shuryak, PRC '98]

Chemical composition of stable hadrons is fixed, kinetic equilibrium maintained through pseudo-elastic resonance reactions $\pi\pi \leftrightarrow \rho$, $\pi K \leftrightarrow K^*, \pi N \leftrightarrow \Delta$, etc.

Effective chemical potentials:

 $\tilde{\mu}_j = \sum_{i \in \text{stable}} \langle n_i \rangle_j \mu_i, \quad \langle n_i \rangle_j - \text{mean number of hadron } i \text{ from decays of hadron } j, \quad j \in \text{HRG}$

Conservation laws:

E.g.: $\pi + 2\rho + 3\omega + \cdots = const$, $N + \Delta + N^* + \cdots = const$, $K + K^* + \cdots = const$

Numerical implementation of PCE in Thermal-FIST

Partial chemical equilibrium at the LHC

[V.V., K. Gallmeister, J. Schaffner-Bielich, C. Greiner, 1903.10024]

"Initial conditions": $T_{ch} = 155$ MeV, $V_{ch} = 4700$ fm³ (0-10% Pb-Pb 2.76 TeV)

Resonance suppression in hadronic phase

Yields of resonances are *not* conserved in partial chemical equilibrium

[V.V., Gallmeister, Schaffner-Bielich, Greiner, 1903.10024]

Resonance suppression in hadronic phase

Yields of resonances are not conserved in partial chemical equilibrium

E.g. K^* yield dilutes during the cooling through reactions $\pi K \leftrightarrow K^*$

Fitting the yields of short-lived resonances is a new way to extract the kinetic freeze-out temperature

Saha equation: Light nuclei

Saha equation

Deviations from thermal model predictions are moderate despite significant cooling and dilution. *Is this the reason for why thermal model works so well?*

For $T = T_{kin}$ similar results reported in [X. Xu, R. Rapp, EPJA 55, 68 (2019)]

Saha equation: Light nuclei

Deviations from thermal model predictions are moderate despite significant cooling and dilution. *Is this the reason for why thermal model works so well?*

For $T = T_{kin}$ similar results reported in [X. Xu, R. Rapp, EPJA 55, 68 (2019)]

Saha equation: Hypernuclei

Hypernuclei stay close to the thermal model prediction. An exception is a hypothetical $\Xi\Xi$ state \leftarrow planned measurement in Runs 3 & 4 at the LHC [LHC Yellow Report, 1812.06772]

Saha equation and excluded volume effects

ALC: N

Eigenvolumes: effective mechanism for nuclei suppression at large densities

Excluded-volume effects go away as the system dilutes. At $T \cong 100$ MeV agrees with the point-particle model. Does not describe data for $T = T_{ch}$

On the feeddown contributions from decays of unstable fragments

V.V., B. Dönigus, H. Stoecker, et al., in preparation

Feeddown in thermal model

= 155 MeV

Production of p

Primordial density = 0.0028648 fm ⁻³ T =	
Primordial yield = 11.4594	
Total yield = 31.4347	
Primordial + strong decays = 31.4347	
Primordial + strong + EM decays = 31.4347	
Primordial + strong + EM + weak decays = 48.585	57

Source	Multiplicity	Fraction (%)
Primordial	11.4594	36.4545
Decays from primordial Delta(1232)++	4.86466	15.4755
Decays from primordial Delta(1232)+	3.24327	10.3175
Decays from primordial Delta(1232)0	1.62139	5.15797
Decays from primordial N(1520)0	0.5628	1.79038
Decays from primordial Delta(1600)++	0.540859	1.72058
Decays from primordial N(1520)+	0.436374	1.38819
Decays from primordial N(1440)0	0.412215	1.31134
Decays from primordial Delta(1600)+	0.3931	1.25053
Decays from primordial N(1440)+	0.367071	1.16773
Decays from primordial N(1675)+	0.362324	1.15263
Decays from primordial N(1680)0	0.352206	1.12044

[**V.V.**, Stoecker, CPC (2019)]

Feeddown to yields of light nuclei seldom considered in HICs

Feeddown from nuclear fragments

In what follows feeddown from known A = 4 and significant A = 5 unstable fragments included. Fragments modeled as point particles.

Feeddown from nuclear fragments

Feeddown fraction along the phenomenological freeze-out curve

- LHC: 5% effect. Can be measured through p-³He, p-⁴He correlation?
- **RHIC/SPS:** 10-40% effect
- **GSI-HADES/FAIR:** Feeddown accounts for more than half of t, ³He, ⁴He

Possible to obtain a non-monotonic behavior of $O_{t,p,d}$ in ideal gas picture Relevance of excited ⁴He states also pointed out in baryon preclustering study [Torres-Rincon, Shuryak, 1910.08119] 28

- **Thermal-FIST** is a user-friendly open source package for general purpose statistical-thermal model applications, in particular nuclei.
- Multiplicity dependence of light nuclei abundances at the LHC consistent with basic canonical suppression considerations, but no simultaneous description of the p/ $\pi\,$ ratio
- Saha equation extends the statistical approach down to the kinetic freeze-out, offers possible explanation why the thermal model for point-like nuclei works so well.
- Feeddown from unstable fragments is sizable for yields of t, ${}^{3}\text{He}$, ${}^{4}\text{He}$

- **Thermal-FIST** is a user-friendly open source package for general purpose statistical-thermal model applications, in particular nuclei.
- Multiplicity dependence of light nuclei abundances at the LHC consistent with basic canonical suppression considerations, but no simultaneous description of the p/ $\pi\,$ ratio
- Saha equation extends the statistical approach down to the kinetic freeze-out, offers possible explanation why the thermal model for point-like nuclei works so well.
- Feeddown from unstable fragments is sizable for yields of t, ${}^{3}\text{He}$, ${}^{4}\text{He}$

Thanks for your attention!

Backup slides

Normally, when the total number of particles carrying a conserved charge is smaller or of the order of unity

The canonical treatment is often restricted to strangeness only (SCE) [STAR collaboration, 1701.07065; ALICE collaboration, 1807.11321]

- Strangeness conservation is most important at low energies (HADES, CBM)
- Small systems at RHIC and LHC: exact baryon conservation at least as important as strangeness

CSM at LHC

Enforce exact conservation of charges, B = Q = S = 0, in a *correlation volume* V_C around midrapidity

In general, $V_{c} \neq dV/dy$ Causality argument: exact conservation across a few units of rapidity?

New application: CSM for **light nuclei**

- Suppression of nuclei-toproton ratios at low multiplicities
- For these observables sufficient to enforce exact baryon conservation only

"Vanilla" CSM at LHC

 $T_{ch} = 155$ MeV, $V_C = 3dV/dy$, multiplicity dependence driven by V_C only

Fair for hyperons, protons and kaons worse, ϕ goes in the opposite direction

[V.V., Dönigus, Stoecker, 1808.05245, PLB '18]

Full CSM analysis

 γ_S CSM: $V_C = 3dV/dy$, fit T_{ch} and γ_S at each centrality in p-p, p-Pb, Pb-Pb

Canonical suppression and strangeness saturation important below $dN_{ch}/d\eta \approx 100$

Full CSM analysis: yields

Relative accuracy of $\gamma_s CSM$ is ~15% across all multiplicity bins

[V.V., Dönigus, Stoecker, 1906.03145]

Two experimental observations at the LHC

1. Measured yields are described by thermal model at $T_{ch} \approx 155 \text{ MeV}^*$

2. Spectra described by blast-wave model at $T_{kin} \approx 100 - 120 \text{ MeV}^*$

[ALICE collaboration, PRC 93, 024917 (2016)]

What happens between T_{ch} and T_{kin} ?

Big Bang vs "Little Bangs"

- Hadrons (nucleons) form and "freeze-out" chemically before nuclei
- Bosons (photons or pions) catalyse nucleosynthesis

e.g. $p + n \leftrightarrow d + \gamma$ vs $p + n + \pi \leftrightarrow d + \pi$

Similarities:

- Inelastic nucleonic reactions freeze-out before nuclei formation
- Isentropic expansion of boson-dominated matter (photons in BBN vs mesons in HIC), baryon-to-boson ratio: $\eta_{BBN} \sim 10^{-10}$, $\eta_{LHC} \sim 0.05$
- Strong nuclear formation and regeneration reactions \rightarrow Saha equation

Differences:

- Time scales: 1-100 s in BBN vs $\sim 10^{-22}$ s in HIC
- Temperatures: $T_{BBN} < 1$ MeV vs $T_{HIC} \sim 100$ MeV
- Binding energies, proton-neutron mass difference, and neutron lifetime important in BBN, less so in HICs
- $\mu_B \approx 0$ at the LHC, $\mu_B \neq 0$ in BBN
- Resonance feeddown important at LHC, irrelevant in BBN

LHC nucleosynthesis: simplified setup

- Chemical equilibrium lost at $T_{ch} = 155$ MeV, abundances of nucleons are frozen and acquire effective fugacity factors: $n_i = n_i^{eq} e^{\mu_N/T}$
- Isentropic expansion driven by effectively massless mesonic d.o.f.

$$rac{V}{V_{\mathsf{ch}}} = \left(rac{T_{\mathsf{ch}}}{T}
ight)^3$$
, $\mu_N \simeq rac{3}{2} \ T \ \mathsf{ln} \left(rac{T}{T_{\mathsf{ch}}}
ight) + m_N \ \left(1 - rac{T}{T_{\mathsf{ch}}}
ight)$

• Detailed balance for nuclear reactions, $X + A \leftrightarrow X + \sum_i A_i$, X is e.g. a pion

$$\frac{n_{A}}{\prod_{i} n_{A_{i}}} = \frac{n_{A}^{eq}}{\prod_{i} n_{A_{i}}^{eq}}, \quad \Leftrightarrow \quad \mu_{A} = \sum_{i} \mu_{A_{i}}, \quad \text{e.g.} \quad \mu_{d} = \mu_{p} + \mu_{n}, \quad \mu_{3}_{He} = 2\mu_{p} + \mu_{n}, \quad \dots$$

Saha equation
$$X_{A} = d_{A} \left[(d_{M})^{A-1} \zeta(3)^{A-1} \pi^{\frac{1-A}{2}} 2^{-\frac{3+A}{2}} \right] A^{5/2} \left(\frac{T}{m_{N}} \right)^{\frac{3}{2}(A-1)} \eta_{B}^{A-1} \exp\left(\frac{B_{A}}{T} \right)$$
$$d_{M} \sim 11 - 13, \quad \eta_{B} \simeq 0.03$$

$$BBN: \quad X_{A} = d_{A} \left[\zeta(3)^{A-1} \pi^{\frac{1-A}{2}} 2^{\frac{3A-5}{2}} \right] A^{\frac{5}{2}} \left(\frac{T}{m_{N}} \right)^{\frac{3}{2}(A-1)} \eta^{A-1} X_{p}^{Z} X_{n}^{A-Z} \exp\left(\frac{B_{A}}{T} \right)$$
[E. Kolb, M. Turner, "The Early Universe" (1990)] 8

Thermal model:

Strong exponential dependence on the temperature is eliminated in the Saha equation approach

Further, quantitative applications require numerical treatment of full spectrum of *massive* mesonic and baryonic resonances

Saha equation: Entropy production effect

