Unveiling the Properties of Strongly Interacting Matter under Extreme Conditions

Volodymyr Vovchenko (Berkeley Lab/INT Seattle)

Department of Physics Colloquium

February 1, 2022

Unterstützt von / Supported by

Stiftung/Foundation

Structure of matter

Strongly interacting matter

• Theory of strong interactions: *Quantum Chromodynamics* (QCD)

$$\mathcal{L} = \sum_{q=u,d,s,...} ar{q} \left[i \gamma^{\mu} (\partial_{\mu} - i g A^{a}_{\mu} \lambda_{a}) - m_{q}
ight] q - rac{1}{4} G^{a}_{\mu
u} G^{\mu
u}_{a}$$

• At smaller energies confined into baryons (qqq) and mesons $(q\bar{q})$

Scales

- Length: 1 femtometer = 10^{-15} m
- Temperature: 100 MeV $/k_B = 10^{12}$ K

Where is it relevant?

- Early Universe
- Astrophysics: Neutron star (mergers)

Studied in laboratory with heavy-ion collisions

QCD features and emergent phenomena

- Asymptotic freedom Gross, Politzer, Wilczek (1973)
 - Coupling becomes small at high energies/small distances
 - Theory is in perturbative regime at small distances

- Hadrons (confinement)
 - No free quarks or gluons ever observed
 - They must form composite, color-neutral objects the hadrons

- Dynamical mass generation
 - Proton (uud) mass is $m_p = 938 \text{ MeV/c}^2$ but $m_u + m_u + m_d \sim 15 \text{ MeV/c}^2$
 - >95% of proton's mass from QCD, only <5% is from Higgs

Non-perturbative methods

First-principle tool: Lattice QCD

Ab-initio calculation of hadron masses

BMW Collaboration, Science 322, 1224 (2008)

Remarkable agreement of QCD with the experiment

QCD transition from lattice **QCD**

- Analytic crossover at vanishing net baryon density at $k_B T_{pc} \approx 155$ MeV a first-principle result [Y. Aoki et al., Nature 443, 675 (2006)]
- Finite baryon densities inaccessible due to the sign problem
- Laboratory: heavy-ion collisions test of QCD and a tool unveil its many properties

QCD laboratories (~1980-...)

Relativistic heavy-ion collisions

Length: 10⁻¹⁵ m

Relativistic heavy-ion collisions – "Little Bangs"

Control parameters

- Collision energy $\sqrt{s_{NN}} = 2.4 5020 \text{ GeV}$
- Size of the collision region

Measurements

• Final hadron abundances and momentum distributions

QCD phase diagram with heavy-ion collisions

Apply concepts of statistical mechanics

Particle production in heavy-ion collisions

Ideal gas law (E. Clapeyron, 1834) $P_i V = N_i k_B T$

is the simplest model of particle production

$$N_{i} = \frac{d_{i}V}{2\pi^{2}} \int dk \, k^{2} \left[1 \pm \exp\left(\frac{\sqrt{k^{2} + m_{i}^{2}} - \mu_{i}}{T}\right) \right]^{-1}$$

© J. Cleymans

ALICE collaboration (Quark Matter 2018)

Hadron resonance gas (HRG) model

• **HRG model:** free gas of known hadrons and resonances

 $p(T, \mu_B) = T \phi_M(T) + 2 T \phi_B(T) \cosh(\mu_B/T)$ mesons $\phi_{M(B)}(T) = \sum_{i \in M(B)} \frac{d_i}{2\pi^2} \int dk \, k^2 \exp\left(-\frac{\sqrt{m_i^2 + k^2}}{T}\right)$

- Hadronic interactions dominated by resonance formation*
- Leading order in relativistic virial expansion
- Matches well with lattice QCD below T_{pc}
- Non-resonant interactions incorporated in extended descriptions

HRG model and heavy-ion collisions:

Basis for the thermal model of particle production

All bells and whistles implemented in open source codes, e.g. Thermal-FIST [VV, Stoecker, Comput. Phys. Commun. 244, 295 (2019)]

Figure from HotQCD coll., PRD '14

12

* Dashen, Ma, Bernstein, "S-matrix formulation of statistical mechanics", Phys. Rev. (1969); Prakash, Venugopalan, Nucl. Phys. A (1992)

Mapping heavy-ion collisions onto the QCD phase diagram

Fit hadron yields with the HRG model

 $\sqrt{s_{NN}} \searrow \longrightarrow \mu_B \nearrow$

With higher precision probe more detailed properties like flavor separation in the freeze-out process F. Flor, G. Olinger, R. Bellwied, Phys. Lett. B 814, 136098 (2021)

13

QCD critical point

Figure from Bzdak et al., Phys. Rept. '20

What is the nature of the quark-hadron transition at finite baryon density?

Is there a QCD phase transition and critical point? Where?

Tackle these questions with heavy-ion collisions

Critical point and fluctuations

Density fluctuations at macroscopic length scales

Critical opalescence

Unfortunately, we cannot do this in heavy-ion collisions

Event-by-event fluctuations and statistical mechanics

Consider a fluctuating number N

Cumulants: $G_N(t) = \ln \langle e^{tN} \rangle = \sum_{n=1}^{\infty} \kappa_n \frac{t^n}{n!}$ variance $\kappa_2 = \langle (\Delta N)^2 \rangle = \sigma^2$

skewness

kurtosis

 $egin{aligned} \kappa_3 &= \langle (\Delta {\sf N})^3
angle \ \kappa_4 &= \langle (\Delta {\sf N})^4
angle - 3 \langle (\Delta {\sf N}^2)
angle^2 \end{aligned}$

width
asymmetry

peak shape

Experiment:

Statistical mechanics:

Grand partition function

$$ln Z^{
m gce}(T,V,\mu) = ln \left[\sum_{N} e^{\mu N} Z^{
m ce}(T,V,N)
ight],$$

Cumulants measure chemical potential derivatives of the (QCD) equation of state

Applications

• (QCD) critical point – large critical fluctuations of baryon (proton) number

M. Stephanov, Phys. Rev. Lett. (2011)

• Test of (lattice) QCD at $\mu_B \approx 0$

Correlation length $\xi \to \infty$ diverges at the critical point

$$\kappa_2\sim\xi^2$$
, $\kappa_3\sim\xi^{4.5}$, $\kappa_4\sim\xi^7$

Looking for non-monotonic dependence of κ_4 vs $\sqrt{s_{NN}}$

• Freeze-out from fluctuations

Borsanyi et al. PRL 113, 052301 (2014); Bazavov et al. PRL 109, 192302 (2012) 17

Example: Liquid-gas transition with van der Waals equation

VV, Anchishkin, Gorenstein, Poberezhnyuk, Phys. Rev. C 92, 054901 (2015)

Measuring cumulants in heavy-ion collisions

Cumulants are extensive, $\kappa_n \sim V$, use ratios to cancel out the volume

$$\frac{\kappa_2}{\langle N \rangle}$$
, $\frac{\kappa_3}{\kappa_2}$, $\frac{\kappa_4}{\kappa_2}$

Experimental measurements

Reduced errors (better statistics) to come soon from beam energy scan II program

Can we learn more from the more accurate data available for κ_2 and κ_3 ?

Theory vs experiment: Challenges for fluctuations

Theory

 $\ensuremath{\mathbb{C}}$ Lattice QCD@BNL

- Coordinate space
- In contact with the heat bath
- Conserved charges
- Uniform
- Fixed volume

Experiment

STAR event display

- Momentum space
- Expanding in vacuum
- Non-conserved particle numbers
- Inhomogenous
- Fluctuating volume

Tackle with dynamical description

Dynamical approaches to the QCD critical point search

- 1. Dynamical model calculations of critical fluctuations
 - Fluctuating hydrodynamics
 - Equation of state with tunable critical point [P. Parotto et al, Phys. Rev. C 101, 034901 (2020)]
 - Predict CP signatures dependent on its location

Under development within the Beam Energy Scan Theory (BEST) Collaboration

BEST [X. An et al., Nucl. Phys. A 1017, 122343 (2022)]

- 2. Deviations from precision calculations of the non-critical baseline
 - Include essential non-critical contributions to (net-)proton number cumulants
 - Exact baryon conservation + hadronic interactions (hard core repulsion)
 - Based on realistic hydrodynamic simulations tuned to bulk data

[VV, C. Shen, V. Koch, Phys. Rev. C 105, 014904 (2022)]

Excluded volume effect

Incorporate repulsive baryon (nucleon) hard core via excluded volume VV, M.I. Gorenstein, H. Stoecker, Phys. Rev. Lett. 118, 182301 (2017)

Amounts to a van der Waals correction for baryons in the HRG model

 $V \rightarrow V - bN$

 $\leftarrow 2r \rightarrow$

Figure from Ishii et al., PRL '07

• Net baryon kurtosis suppressed as in lattice QCD

$$\frac{\chi_4^B}{\chi_2^B} \simeq 1 - \frac{12b\phi_B(T)}{\Phi_B(T)} + O(b^2)$$

• Reproduces virial coefficients of baryon interaction from lattice QCD

Excluded volume from lattice QCD: b

$$b \approx 1 \text{ fm}^3$$

VV, A. Pasztor, S. Katz, Z. Fodor, H. Stoecker, Phys. Lett. B 755, 71 (2017) 23

RHIC-BES: Hydrodynamic description in non-critical scenario

- Collision geometry based 3D initial state
 - Constrained to net proton distributions [Shen, Alzhrani, Phys. Rev. C '20]
- Viscous hydrodynamics evolution MUSIC-3.0
 - Energy-momentum and baryon number conservation
 - Crossover equation of state based on lattice QCD [Monnai, Schenke, Shen, Phys. Rev. C '19; also Noronha-Hostler, Parotto, Ratti, Stafford, Phys. Rev. C '19]
- Cooper-Frye particlization at $\epsilon_{sw} = 0.26 \text{ GeV}/\text{fm}^3$

$$\omega_p rac{dN_j}{d^3 p} = \int_{\sigma(x)} d\sigma_\mu(x) \, p^\mu \, rac{d_j \, \lambda_j^{\mathsf{ev}}(x)}{(2\pi)^3} \, \exp\left[rac{\mu_j(x) - u^\mu(x) p_\mu}{T(x)}
ight].$$

- Particlization respects QCD-based baryon number distribution
 - Incorporated via baryon excluded volume $b = 1 \text{ fm}^3$ [VV, V. Koch, Phys. Rev. C 103, 044903 (2021)]
- Incorporates exact global baryon conservation via a novel method [VV, Phys. Rev. C 105, 014903 (2022)]

VV, V. Koch, C. Shen, Phys. Rev. C 105, 014904 (2022)

Net proton cumulant ratios

- Data at $\sqrt{s_{NN}} \ge 20$ GeV consistent with non-critical physics (baryon conservation and repulsion)
- Effect from baryon conservation is larger than from repulsion
- Excess of correlations in data at $\sqrt{s_{NN}} < 20$ GeV hint of attractive interactions? Critical point?

Lower energies $\sqrt{s_{NN}} \le 7.7$ GeV

Naïvely, could indicate QCD critical point near HADES freeze-out at $T \approx 70$ MeV, $\mu_B \approx 875$ MeV

Some effective QCD approaches do predict the critical point close to that region, e.g. holography [Critelli, Noronha, Noronha-Hostler, Portillo, Ratti, Rougemont, Phys. Rev. D 96, 096026 (2017)] [Grefa et al., Phys. Rev. D 104, 034002 (2021)]

QCD phase structure: What we learned so far

- Data at high energies ($\sqrt{s_{NN}} \ge 20$ GeV) consistent with "non-critical" physics
- Disfavors critical point at $\mu_B/T < 2-3$, consistent with what we know from lattice QCD
- Interesting physics at high densities probed by future experiments, neutron stars & their mergers

Outlook: Equation of state for heavy ions and neutron stars

P. Senger (GSI)

L. Weih, L. Rezzolla (Frankfurt)

Summary

- Strongly interacting QCD matter under extreme conditions
 - Undergoes a transition to quark-gluon plasma at trillion kelvin degrees
 - Behaves like a fluid described by hydrodynamics
 - Phase structure at finite baryon density still largely unknown, no phase transition at high energies
- Fluctuations are a powerful tool to explore the QCD phase diagram
 - Heavy-ion data are described quantitatively at $\sqrt{s_{NN}} \ge 20$ GeV without critical point
 - Possible critical point signals at $\sqrt{s_{NN}} < 14.5$ GeV
 - More evidence at lower energies to come from future experiments and connections to neutron star phenomena

Thanks for your attention!