QCD phase structure from fluctuations in heavy-ion collisions: Connecting theory to experiment

Volodymyr Vovchenko (LBNL)

STAR Collaboration Meeting September 22, 2021

Unterstützt von / Supported by

Alexander von Humboldt Stiftung/Foundation

Strongly interacting matter

• Theory of strong interactions: *Quantum Chromodynamics* (QCD)

$$\mathcal{L} = \sum_{q=u,d,s,...} ar{q} \left[i \gamma^{\mu} (\partial_{\mu} - i g A^{a}_{\mu} \lambda_{a}) - m_{q}
ight] q - rac{1}{4} \, G^{a}_{\mu
u} G^{\mu
u}_{a}$$

- Basic degrees of freedom: quarks and gluons
- At smaller energies confined into baryons (qqq) and mesons $(q\overline{q})$

Where is it relevant?

- Early universe
- Neutron star (mergers)
- Heavy-ion collisions (lab!)

Energy scale: 100 MeV = 10^{12} K

$$c = c = k_B = 1$$

QCD phase diagram

- Dilute hadron gas at low T/n_B due to confinement, quark-gluon plasma high T/n_B
- Nuclear liquid-gas transition in cold and dense matter, lots of other phases conjectured

What is the nature of the quark-hadron transition?

QCD transition from lattice **QCD**

First-principle tool: Lattice QCD

$$Z = {
m Tr}(e^{-(\hat{H}-\mu\hat{N})/T}) = \int DU \, \det M[U,\mu] \, e^{-S_{YM}}$$

First-principle tool: Lattice QCD

• Analytic crossover at vanishing net baryon density – a first-principle result

[Y. Aoki et al., Nature 443, 675 (2006)]

• Finite densities inaccessible due to **sign problem**, but many effective theories predict firstorder phase transition and the **QCD critical point**

First-principle constraints on the QCD critical point

Indirect lattice QCD methods offer glimpse into small μ_B/T

• Taylor expansion around $\mu_B/T=0$

$$\frac{p(T,\mu_B)}{T^4} = \frac{p(T,0)}{T^4} + \frac{\chi_2^B(T,0)}{2!}(\mu_B/T)^2 + \frac{\chi_4^B(T,0)}{4!}(\mu_B/T)^4 + \dots$$

No hints for the critical point at T > 135 MeV Critical point $\mu_B/T < 3$ disfavored

- Relativistic virial expansion in fugacities via analytic continuation from imaginary μ_B/T

$$\frac{p(T,\mu_B)}{T^4} = \sum_{k=0}^{\infty} p_k(T) \cosh\left(\frac{k\,\mu_B}{T}\right)$$

Expansion sees singularity in the complex plane, Im $[\mu_B/T] = \pi$ Critical point at $\mu_B/T < \pi$ disfavored

Critical point, if it exists, likely located beyond the reach of lattice methods

[HotQCD Collaboration, PRD 95, 054504 (2017)]

[V.V., Steinheimer, Philipsen, Stoecker, PRD 97, 114030 (2018)]

QCD phase diagram with heavy-ion collisions

STAR event display

Figure from Bzdak et al., Phys. Rept. '20

Thousands of particles created in relativistic heavy-ion collisions

Apply concepts of statistical mechanics

Mapping heavy-ion collisions onto the QCD phase diagram

 $\sqrt{S_{NN}} \searrow$ $\mu_B \nearrow$

For differential observables (spectra, flow, ...) use relativistic hydrodynamics

Event-by-event fluctuations and statistical mechanics

Cumulants measure chemical potential derivatives of the (QCD) equation of state

Event-by-event fluctuations and statistical mechanics

Cumulants measure chemical potential derivatives of the (QCD) equation of state

• (QCD) critical point – large correlation length, critical fluctuations of baryon number

M. Stephanov, PRL '09, '11 Energy scans at RHIC (STAR) and CERN-SPS (NA61/SHINE)

$$\kappa_2\sim\xi^2$$
, $\kappa_3\sim\xi^{4.5}$, $\kappa_4\sim\xi^7$

 $\xi \to \infty$

Looking for non-monotonic dependence of κ_4

Critical opalescence

Example: Nuclear liquid-gas transition

[VV, Anchishkin, Gorenstein, Poberezhnyuk, PRC 92, 054901 (2015)]

Experimental measurements

STAR Collaboration, PRL 126, 092301 (2021)

Deviations from Poisson statistics and indications for a non-monotonic collision energy dependence of net-proton $\kappa\sigma^2$

But how to interpret the measurements?

HADES Collaboration, PRC 102, 024914 (2020)

ALICE Collaboration, PLB 807, 135564 (2020)

10

Theory vs experiment

Theory

 $\ensuremath{\mathbb{C}}$ Lattice QCD@BNL

- Coordinate space
- In contact with the heat bath
- Conserved charges
- Uniform
- Fixed volume

Experiment

STAR event display

- Momentum space
- Expanding in vacuum
- Non-conserved particle numbers
- Inhomogenous
- Fluctuating volume

When are the measured fluctuations grand-canonical?

- Consider event-by-event fluctuations of particle number in acceptance ΔY_{accept} around midrapidity
- Scales
 - ΔY_{accept} acceptance
 - ΔY_{total} full space
 - ΔY_{corr} rapidity correlation length (thermal smearing)
 - ΔY_{kick} diffusion in the hadronic phase
- **GCE** applies if $\Delta Y_{total} \gg \Delta Y_{accept} \gg \Delta Y_{kick}, \Delta Y_{corr}$
- In practice $\Delta Y_{total} \gg \Delta Y_{accept}$ and $\Delta Y_{accept} \gg \Delta Y_{corr}$ are not simultaneously satisfied
 - Corrections from baryon conservation are large [Bzdak et al., PRC '13]
 - $\Delta Y_{corr} \sim 1 \sim \Delta Y_{accept}$ [Ling, Stephanov, PRC '16]

Need dynamical description

 $\mathsf{STAR} \text{ event display}$

V. Koch, arXiv:0810.2520

How to probe (critical) fluctuations?

1. Dynamical model calculations of critical fluctuations

- Fluctuating hydrodynamics
- Equation of state with tunable critical point
- Predict CP signatures dependent on its location

Under development within the Beam Energy Scan Theory (BEST) Collaboration [X. An et al., arXiv:2108.13867]

2. Study deviations from the non-critical baseline

- Include essential non-critical contributions to (net-)proton number cumulants
- Exact baryon conservation + baryon excluded volume
- Based on realistic hydrodynamic simulations

The non-critical baseline from hydrodynamics

- Collision geometry based 3D initial state [Shen, Alzhrani, PRC '20]
 - Constrained to net proton distributions
- Viscous hydrodynamics evolution MUSIC-3.0
 - Energy-momentum and baryon number conservation
 - NEOS-BQS crossover equation of state [Monnai, Schenke, Shen, PRC '19]
 - Shear viscosity via IS-type equation
- Cooper-Frye particlization at $\epsilon_{sw} = 0.26 \text{ GeV}/\text{fm}^3$

$$\omega_p rac{dN_j}{d^3 p} = \int_{\sigma(x)} d\sigma_\mu(x) \, p^\mu \, rac{d_j \, \lambda_j^{\mathsf{ev}}(x)}{(2\pi)^3} \, \exp\left[rac{\mu_j(x) - u^\mu(x) p_\mu}{T(x)}
ight].$$

- Particlization includes QCD-based baryon number distribution
 - Here incorporated via baryon excluded volume

[VV, Pasztor, Fodor, Katz, Stoecker, PLB 775, 71 (2017)]

VV, C. Shen, V. Koch, arXiv:2107.00163

Calculating cumulants from hydrodynamics

- Strategy:
 - 1. Calculate proton cumulants in the experimental acceptance in the grand-canonical limit
 - 2. Apply correction for the exact global baryon number conservation

First step:

- Sum contributions from each hypersurface element x_i at freeze-out
 - Cumulants of joint (anti)proton/(anti)baryon distribution

$$\kappa_{n,m}^{B^{\pm},p^{\pm},\text{gce}}(\Delta p_{\text{acc}}) = \sum_{i \in \sigma} \delta \kappa_{n,m}^{B^{\pm},p^{\pm},\text{gce}}(x_i;\Delta p_{\text{acc}})$$

- To compute each contribution
 - GCE susceptibilities $\chi^{B^{\pm}}(x_i)$ define the distribution of the emitted (anti)baryons
 - Each baryon ends up in acceptance Δp_{acc} with binomial probability via Cooper-Frye formula
 - Each baryon is a proton with probability $q(x_i) = \langle N_p(x_i) \rangle / \langle N_B(x_i) \rangle$

Correcting for baryon number conservation

$$P_1^{ ext{ce}}(B_1) \propto \sum_{B_1,B_2} P_1^{ ext{gce}}(B_1) P_2^{ ext{gce}}(B_2) imes rac{\delta_{B,B_1+B_2}}{\delta_{B,B_1+B_2}}$$

- Subensemble acceptance method (SAM)
 - Corrects *any* equation of state for global BQS-charge conservation
 - Canonical ensemble cumulants in terms of grand-canonical ones
 - VV, Savchuk, Poberezhnyuk, Gorenstein, Koch, Phys. Lett. B 811, 135868 (2020) [arXiv:2003.13905]
 - VV, Poberezhnyuk, Koch, JHEP 10, 089 (2020) [arXiv:2007.03850]
- SAM-2.0 VV, arXiv:2106.13775
 - Non-conserved quantities (e.g. proton number)
 - Spatially inhomogeneous systems
 - Momentum space
 - Maps "grand-canonical" cumulants inside and outside the acceptance to the "canonical" cumulants inside the acceptance:*

$$\kappa_{p,B}^{\text{in,ce}} = \mathsf{SAM}\left[\kappa_{p,B}^{\text{in,gce}}, \kappa_{p,B}^{\text{out,gce}}
ight]$$

*Explicit expressions for any cumulant available via a Mathematica notebook at https://github.com/vlvovch/SAM

Net proton cumulant ratios

- Both the baryon conservation and repulsion needed to describe data at $\sqrt{s_{NN}} \geq 20~{\rm GeV}$ quantitatively
- Effect from baryon conservation is larger than from repulsion
- Canonical ideal HRG limit is consistent with the data-driven study of [Braun-Munzinger et al., NPA 1008 (2021) 122141]
- κ_6/κ_2 turns negative at $\sqrt{s_{NN}} \sim 50$ GeV

Cumulants vs Correlation Functions

• Analyze genuine multi-particle correlations via factorial cumulants [Bzdak, Koch, Strodthoff, PRC '17]

$$\hat{C}_1 = \kappa_1, \qquad \hat{C}_3 = 2\kappa_1 - 3\kappa_2 + \kappa_3,$$
$$\hat{C}_2 = -\kappa_1 + \kappa_2, \qquad \hat{C}_4 = -6\kappa_1 + 11\kappa_2 - 6\kappa_3 + \kappa_4$$
$$\hat{C}^{\text{cons}} \propto \alpha^n \qquad \hat{C}^{\text{EV}} \propto b^n$$

[Bzdak, Koch, Skokov, EPJC '17]

,,, [VV et al, PLB '17]

- Three- and four-particle correlations are small
 - Small positive \hat{C}_3/\hat{C}_1 in the data is explained by baryon conservation + excluded volume
 - Strong multi-particle correlations would be expected near the critical point [Ling, Stephanov, 1512.09125]
- Two-particle correlations are negative
 - Protons at $\sqrt{s_{NN}} \le 14.5$ GeV overestimated
 - Antiprotons at $19.6 \le \sqrt{s_{NN}} \le 62.4$ GeV underestimated

Cumulants

Correlation Functions

• Changing y_{max} slope at $\sqrt{s_{NN}} \le 14.5$ GeV?

- Changing y_{max} slope at $\sqrt{s_{NN}} \le 14.5$ GeV?
- Volume fluctuations? [Skokov, Friman, Redlich, PRC '13]
 - $C_2/C_1 += C_1 * v_2$

- Changing y_{max} slope at $\sqrt{s_{NN}} \le 14.5$ GeV?
- Volume fluctuations? [Skokov, Friman, Redlich, PRC '13]
 - $C_2/C_1 += C_1 * v_2$
 - Can improve low energies but spoil high energies?

- Changing y_{max} slope at $\sqrt{s_{NN}} \le 14.5$ GeV?
- Volume fluctuations? [Skokov, Friman, Redlich, PRC '13]
 - $C_2/C_1 += C_1 * v_2$
 - Can improve low energies but spoil high energies?
- Exact electric charge conservation?
 - Worsens the agreement at $\sqrt{s_{NN}} \leq 14.5\,,$ higher energies virtually unaffected

- Changing y_{max} slope at $\sqrt{s_{NN}} \le 14.5$ GeV? ٠
- Volume fluctuations? [Skokov, Friman, Redlich, PRC '13] •
 - $C_2/C_1 + = C_1 * v_2$ •
 - Can improve low energies but spoil high energies? •
- Exact electric charge conservation? •
 - Worsens the agreement at $\sqrt{s_{NN}} \le 14.5$, higher energies ٠ virtually unaffected

⊢ ₁₅/

das

μ (MeV)

- **Attractive interactions?**
 - Could work if baryon repulsion turns • into attraction in the high- μ_B regime (MeV) 20
 - **Critical point?** ٠

Outlook: lower energies $\sqrt{s_{NN}} \le 7.7$ GeV

- Intriguing hint from HADES @ $\sqrt{s_{NN}} = 2.4$ GeV: huge two-particle correlations!
- Extend the calculations down to $\sqrt{s_{NN}} = 3$ GeV by means of the blast-wave model
- No change of trend in the non-critical baseline
- Other important effects to consider
 - Light nuclei formation
 - Nuclear liquid-gas transition

Data from STAR-FXT eagerly awaited!

Outlook: baryon cumulants from protons

- net baryon \neq net proton
- Baryon cumulants can be reconstructed from proton cumulants via binomial (un)folding based on isospin randomization [Kitazawa, Asakawa, Phys. Rev. C 85 (2012) 021901]
 - Amounts to an additional "efficiency correction" and requires the use of joint factorial moments, only experiment can do it model-independently

1.2

Summary

- Fluctuations are a powerful tool to explore the QCD phase diagram
 - test of lattice QCD and equilibration
 - probe the QCD critical point
- Quantitative analysis of Au-Au collisions at $\sqrt{s_{NN}}$ =7.7-200 GeV
 - STAR protons are described quantitatively at $\sqrt{s_{NN}} \ge 20$ GeV
 - Significant difference between protons and baryons
- Factorial cumulants carry rich information
 - Small three- and four-particle correlations in absence of critical point effects
 - Possible evidence for attractive proton interactions at $\sqrt{s_{NN}} \le 14.5$ GeV
- Outlook: Lower collision energies $\sqrt{s_{NN}} \le 7.7$ GeV

Thanks for your attention!

