Sensitivity of thermal fits to heavy-ion yield data to the modeling of eigenvolume interactions

Volodymyr Vovchenko

In collaboration with Horst Stoecker based on arXiv:1512.08046

Palaver SS 2016

ITP, Frankfurt 02 May 2016

Strongly interacting matter

- Theory of strong interactions: Quantum Chromodynamics (QCD)
- Basic degrees of freedom: quarks and gluons
- At smaller energies confined into hadrons (baryons and mesons)

Scales

- \bullet Length: 1 fm = 10^{-15} m = 10^{-5} Å
- Energy: 100 MeV = 10^{10} times room T

Where is it relevant?

- Early universe
- Neutron stars
- Heavy-ion collisions (laboratory!)

First principles of QCD are rather established, but direct calculations are problematic Phenomenological tools are very useful Experiment: heavy-ion collisions

Heavy-ion collisions

High energy collision of heavy ions creates excited QCD matter Running experiments at CERN, RHIC, future at FAIR and NICA

> Pb + Pb, Ekl = 158,0A GeV b = 0,0 fm Time: -20,00 fm/c

- Detectors measure yields and momenta of created hadrons
- Is equilibration reached in the collision?
- Can heavy-ion collisions be mapped on QCD phase diagram?

Thermal model

Thermal model - simplest model to describe hadron abundances

Key assumptions

- Matter is thermalized at chemical freeze-out
- Described as non-interacting gas of hadrons and resonances
- Characterized by few thermal parameters (T, μ_B, V)

Density of thermal hadrons

$$n_i = \frac{g_i}{(2\pi)^3} \int d^3p \left\{ \exp[(\omega_p^i - \mu_i)/T] \pm 1 \right\}^{-1}$$

$$\mu_i = B^i \mu_B + Q^i \mu_Q + S^i \mu_S, \quad \omega_p^i = \sqrt{m_i^2 + p^2}.$$

Total hadron density – thermal + resonance decay feed-down

$$n_i^{tot} = n_i + \sum_{j \neq i} Br(j \rightarrow i)n_j.$$

Absolute yields are defined by volume $V: N_i = Vn_i$.

A. Andronic, P. Braun-Munzinger, J. Stachel, Phys. Lett. B 673, 142 (2009)

- Good qualitative description across several orders of magnitude
- Evidence for thermodynamic equilibrium

Chemical freeze-out curve

Minimizing the χ^2 of measured yields allows to extract thermal parameters at freeze-out 0.2 <E>/<N>=1.1 GeV ALICE Pb+Pb $\sqrt{s_{_{NN}}} = 2.76$ TeV <E>/<N>=1.0 GeV Temperature (GeV) K± K⁰ K* JN/dy 10 ALICE Preliminary Pb-Pb vs_{NN} = 2.76 TeV, 0-10% SPS PF 10 AGS Au-A di Notin B 10-1 Model T (MeV 2/NDI 10-2 - THERMUS 2.2 24 5/9 $155 \pm$ 10-3 (GSI-Heidelber 18.4/9 FOPI SHARE 3 15.1/9 10-4 HADES 0.5 GSI Au-Au [™]⊒ -0. 0 0 0.2 0.4 0.60.8 $\mu_{\rm B}({\rm GeV})$

Chemical freeze-out in HIC mapped on QCD phase diagram but ...

- How robust are the conclusions based on ideal gas?
- Is there really a sharp freeze-out with well-defined temperature?

Interacting hadron gas

- In realistic hadron gas there are attractive and repulsive interactions
- Attraction already included by resonances
- Model repulsive interactions by eigenvolume correction
- Van der Waals procedure: $V \rightarrow V vN$

$$P = \frac{NT}{V - vN}$$

In GCE: transcendental equation for pressure¹

$$P(T,\mu) = P^{id}(T,\mu-vP), \qquad n(T,\mu) = n^{id}(T,\mu^*)/(1+vn^{id}(T,\mu^*))$$

In multi-component system $V \rightarrow V - \sum_i v_i \, N_i ~{\rm and}^2$

$$P(T,\mu) = \sum_{i} P_{i}^{id}(T,\mu_{i}-v_{i}P), \qquad n_{i}(T,\mu) = n_{i}^{id}(T,\mu_{i}^{*})/(1+\sum_{i} v_{i}n_{i}^{id}(T,\mu_{i}^{*}))$$

¹D.H. Rischke, M.I. Gorenstein, H. Stoecker, W. Greiner, Z.Phys. C 51, 485 (1991) ²G.D. Yen, M.I. Gorenstein, W. Greiner, S.N. Yan, Phys. Rev. C 56, 2210 (1997)

Some details about implementation

- Own implementation of eigenvolume HRG written in C++ is used
- Solves eigenvolume models, also many other features
- Auxiliary tool: GUI written within Qt framework
- Where possible cross-checked with THERMUS package

rmal	I model	Fit to experiment	Energy of	lependence	e Conto	ur plots	Event ge	nerator							
	Name	e PDG I	D Mass	Stable?	Baryon?	Neutral?	Charge	Strangeness	Charm	Prim. density	Prim. multiplie	ity Tot: ^	Model:		
pi	10	111	0,13498			•				0,0221724	92,8755	228	● Ideal HRG ○ EV-HRG ○ CE-HRG ○ S-CE-HRG ○ C-CE-HRG		
pi	i+	211	0,13957				+1			0,0200586	84,0212	196	Statistics		
pi	ŀ-	-211	0,13957	*			-1			0,023665	99,1277	222	Oak Re.		
ĸ	+	321	0,49368	*			+1	+1		0,00701418	29,3809	40,4	O Bortzmann Quantum		
ĸ		-321	0,49368	*			-1	-1		0,00201722	8,44971	13,5	Hadron radius (fm): 0,30 \$		
К	05	310	0,49767	*				(hidden)		0	0	27,1	Parameters:		
К	OL	130	0,49767	*				(hidden)		0	0	27,1	T (MeV): 125,00 0 yt: 1,00 0 R (fm): 10,000 0		
K	0	311	0,49767					+1		0,00739406	30,9721	41,7	11. (Mel/): 450.00 A 11. (Mel/): 85.81 A 11. (Mel/): -0.30 A		
K	0bar	-311	0,49767	102					pi-				× 0.0 * 0.00 * 0.00 * 0.00 * 0.00		
et	ta	221	0,5473	D: 2						B: Z v S: 0 v Q: Z v					
rh	10+	213	0,7711	Info	information: Particle production: stic: 0,400 C							stio: 0,400 0			
rh	10-	-213	0,7711	Nat	me C ID	= 1	pi- Primordial		Ensity = 0.023665 /fm^3				Ite resonance width Renormalize branching ratios		
rh	100	113	0,7711	Mar	Mass = 139.57 MeV Tatal emilliplicity = 322.401 [ellization:			lellization:							
or	mega(782)	223	0,78257	8257 Type = Meson managed and the second mana			the penMP								
f0	(600)	900022	1 0,8	Net	utral?		vo	Direct thermal		ie.	Multiplicity	Fraction (%)			
Ks	star(892)+	323	0,89166	Spi	n degenera	icy = 1	L.				99.12// 4	4.5535	ulate Write to file		
Ks	star(892)-	-323	0,89166	Ele	Electric charge Strangeness	e =-	1	Decays from	Decays from thermal De		21.8199	1.80705	nmark		
Ks	star(892)0	313	0,8961	Cha	Charm Strangeness content Charm content Hard core radius		5	Decays from	Decays from thermal mo- Decays from thermal rho0 Decays from thermal omega(782) Decays from thermal Delta(1232)0		11.3422	.09779	aryon density = 0.0805138 tm ²⁺³		
Ks	star(892)0b	iar -313	0,8961	Stra)	Decays from			10.5203	1.7284	aryon number = 337/256 lectric charge = 134.902		
P		2212	0,93827	Har			,).5 fm	Decays from			7.31558	0.28803	trangeness = 2.97647e-09		
pl	bar	-2212	0,93827					Decays from			0.79205	0.00272	harm = 0		
n		2112	2112 0,93956 Decays from thermal Rstar(892)0 5.27301 2.36998	= 1.65152e-11											
nl	bar	-2112	0,93956					Decays from	n mermal I	Delta(1000)-	5.23303		= nan		
et	ta'(958)	331	0,95778			*		0.66667 (hidden)		0,000203562	0,852678	0,93	Total scaled variance = 1		
f0	(980)	901022	1 0,98			*				0,000184701	0,773676	0,78 🖉			
												>	Calculation time = 81 ms		

© 2014-2015 Volodymyr Vovchenko

How to choose eigenvolumes for different hadrons? \Rightarrow consider different scenarios Not many constraints Scenario 0: Constant eigenvolume for all hadrons $(v_i \equiv v)$ In this case in Boltzmann approximation

100

• Simplest and most commonly used parametrization

T (MeV)

- Eigenvolume effects essentially cancel out in yield ratios
- No change in T or μ_B compared to point-particle case

Scenario 1: Mass-proportional eigenvolumes $(v_i = m_i / \varepsilon_0 \text{ or } r_i \sim m_i^{1/3})^3$

- Bag model inspired
- Obtained originally for heavy Hagedorn states
- Results in stronger suppression of heavier hadrons

Drastic changes in ALICE χ^2 profile, also high sensitivity on ε_0 For $r_p = 0.5$ fm global minimum at $T \simeq 270$ MeV

³Hagedorn, Rafelski, Phys. Lett. B (1980); Kapusta, Olive, Nucl. Phys. A (1983) ^{10/19}

Scenario 2: Two-component model: different volumes for mesons and baryons

Wide irregular minimum in T = 155 - 210 MeV range

⁴A. Andronic, P. Braun-Munzinger, J. Stachel, M. Winn, Phys. Lett. B 718, 80 (2012).

Scenario 3: Point-like mesons and reverse bag model for baryons $v_B \sim 1/m$

Strange baryons have generally smaller volumes than non-strange ones

Result: $T_{ch} = 175 \pm 20$ MeV Many other options possible...

Crossterms eigenvolume model

The eigenvolume model we used is not perfectly consistent with virial expansion for multi-component system of hard spheres

$$P(T, \{n_i\}) = T \sum_i n_i + \sum_{ij} b_{ij} n_i n_j + \dots \text{ with } b_{ij} = \frac{2\pi}{3} (r_i + r_j)^3$$

On the other hand, the "Crossterms" eigenvolume model is⁵

$$P(T, \{n_i\}) = T \sum_i \frac{n_i}{1 - \sum_j v_j n_j}, \qquad \Rightarrow \qquad P(T, \{n_i\}) = T \sum_i \frac{n_i}{1 - \sum_j \tilde{b}_{ji} n_j},$$

- Scenario 1: $r_i \sim m_i^{1/3}$
- "Crossterms" give even stronger effect
- $\chi^2/N_{\rm df}: 30/10 \to 15/10 \to 9/10$

•
$$T_{ch}: 155
ightarrow 270
ightarrow 320 \ {
m MeV}$$

⁵M.I. Gorenstein, A.P. Kostyuk, Ya.D. Krivenko, J. Phys. G 25, L75 (1999)

ALICE yields within bag-like eigenvolume parametrization

χ^2 profile at lower energies

So what about other experiments at lower collision energies? Finite net-baryon density \Rightarrow additional fit parameter μ_B Fits to NA49 Pb+Pb 4π data at $\sqrt{s_{_{NN}}} = 6.3, 7.6, 8.8, 12.3$, and 17.3 GeV, and STAR Au+Au dN/dy data at $\sqrt{s_{_{NN}}} = 200$ GeV

χ^2 profile at lower energies

So what about other experiments at lower collision energies? Finite net-baryon density \Rightarrow additional fit parameter μ_B Fits to NA49 Pb+Pb 4π data at $\sqrt{s_{_{NN}}} = 6.3, 7.6, 8.8, 12.3$, and 17.3 GeV, and STAR Au+Au dN/dy data at $\sqrt{s_{_{NN}}} = 200$ GeV

"Crossterms" model with $r_i = r_p (m_i/m_p)^{1/3}$ and $r_p = 0.4, \, 0.5, \, 0.6 \, {\rm fm}$

All the same effect, improved χ^2 , huge sensitivity

χ^2 in $T-\mu_B$ plane

The $T\text{-}\mu_B$ dependence gives a more complete picture

- Conclusions based on point-particle HRG are not robust
- T and μ_B are clearly correlated
- Entropy per baryon $\boldsymbol{S}/\boldsymbol{B}$ approx. constant along valleys of χ^2 minima
- Compatible with isentropic expansion and continuous freeze-out?

Constrained fit

6

5

2

10

 $\chi^2/N_{\rm df}$

- High-temperature fit is problematic
 - VDW approximation breaks down at high densities
 - Cannot properly be reconciled with lattice data

Constrained fit: limit $T \leq 180$ MeV Scenario 1 ($v_i \sim m_i$) can be constrained to lattice data within crossover model for $r_p = 0.43 \text{ fm}^6$

---- Point-particle HRG

100

s^{1/2} (GeV)

⁶M. Albright, J. Kapusta, C. Young, Phys. Rev. C 90, 024915 (2014)

χ^2 profile in constrained fit

 χ^2 still has a rather complicated non-parabolic structure Standard statistical methods of extracting the uncertainties become inapplicable

- Modeling of eigenvolume interactions plays crucial role in thermal analysis of heavy-ion yield data.
- Chemical freeze-out criteria based on point-particle-like HRG are not robust with regard to eigenvolume interactions. Permitting different eigenvolumes for different hadrons changes the results drastically.
- Standard eigenvolume model not consistent with virial expansion for multi-component system of hard spheres. In this case "Crossterms" model might be preferrable.
- Mass-proportional eigenvolumes improve agreement with data and lead to generally wider and irregular χ^2 minima. Obtained results hint on isentropic expansion and continuous chemical freeze-out.

- Modeling of eigenvolume interactions plays crucial role in thermal analysis of heavy-ion yield data.
- Chemical freeze-out criteria based on point-particle-like HRG are not robust with regard to eigenvolume interactions. Permitting different eigenvolumes for different hadrons changes the results drastically.
- Standard eigenvolume model not consistent with virial expansion for multi-component system of hard spheres. In this case "Crossterms" model might be preferrable.
- Mass-proportional eigenvolumes improve agreement with data and lead to generally wider and irregular χ^2 minima. Obtained results hint on isentropic expansion and continuous chemical freeze-out.

Thanks for your attention!

Backup slides

Heavy baryons contribution

Hagedorn divergences are tamed within eigenvolume model Limiting temperature may be artefact of using point-particle gas

Susceptibilities in eigenvolume HRG

Strangeness susceptibility behave differently from baryon and electric charge Hint at flavor dependence of eigenvolumes?