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van der Waals equation

Formulated in
1873.

(
P + N2a

V 2

)
(V − Nb) = NkBT

Nobel Prize in
1910.

A semi-quantitative theory modeling systems with short-
range repulsive (excluded-volume) and intermediate range
attractive (vdW force) intermolecular/atomic interactions
Equation is classical, but the underlying forces are of
quantum mechanical origin
see, e.g., J. Hermann, R. DiStasio Jr., A. Tkatchenko, Chem. Rev.
(2017) for review

Our motivation to use the van der Waals equation comes from high-energy
nuclear physics. . .
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Physics of strongly interacting matter
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Strongly interacting matter
Quantum Chromodynamics (QCD)

L =
∑

q=u,d,s,c,b,t
q̄[iγµ(∂µ − igAa

µλa)−mq]q − 1
4Ga

µνGµν
a

• Fundamental theory of strong nuclear force, part of the Standard Model
• A gauge theory with non-abelian SU(3) group gauge symmetry
• Basic degrees of freedom: quarks and gluons which carry color charge

Features
• Confinement: free quarks never observed, confined into hadrons
baryons (qqq), such as protons (uud) and neutrons (udd), and mesons (qq̄)

• Asymptotic freedom: QCD is asymptotically free at high energies/densities
→ new state of matter called quark-gluon plasma (QGP) expected
Gross, Wilczek, Politzer (1973), 2004 Nobel Prize in Physics

• QCD dynamics is the origin of about 95% of the mass of ordinary matter,
only the rest 5% comes from Higgs
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QGP → ordinary matter transition 100’s µs after Big Bang
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QCD transition
Equilibrium properties of QCD characterized by the equation of state

Partition function: Z = Tr(e−(Ĥ−µN̂)/T )
Numerical solution of QCD with Lattice QCD at zero net baryon number (µ = 0):
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Consistent with ordinary (hadronic) matter at low temperatures, and quark-gluon
plasma at high temperatures, the transition is smooth crossover

Aoki, Endrodi, Fodor, Katz, Szabo, Nature 443, 675 (2006)
Precision LQCD data from 1407.6387 (HotQCD, plotted), 1309.5258 (Wuppertal-Budapest)6/38



QCD Phase Diagram

More relevant QCD applications are at non-zero baryon density
Lattice QCD breaks down due to sign problem ⇒ no first-principle tool

Sketch of the QCD Phase Diagram

Where is it relevant?
• Early universe
• Neutron stars
• Heavy-ion collisions
(laboratory!)

Present knowledge of QCD phase diagram is mostly qualitative and is a field of
active research, dominated by phenomenology
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QCD phase diagram

Curious similarity to some ordinary fluids, albeit at different scales

Our laboratory: ultrarelativistic heavy-ion collisions

Credit: Jan Steinheimer
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QCD laboratories

Relativistic heavy-ion collider (RHIC) at
Brookhaven National Laboratory (BNL)
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QCD laboratories

Large Hadron Collider (LHC) at CERN
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QCD laboratories: future

GSI-FAIR, Darmstadt, Germany

A number of future heavy-ion accelerators being constructed:
GSI-FAIR in Darmstadt, NICA in Dubna, J-PARC in Japan
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QCD laboratories: detector

(c) CERN

Detector of the ALICE experiment at CERN 12/38



Physics of heavy-ion collisions

• Collision energy: from several GeV to several TeV in c.m. frame
• Length scale: L ∼ 10 fm = 10−14 m = 10−4 Å
• Time scale: t ∼ 10−23s 13/38



Physics of heavy-ion collisions
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What do experiments measure?

Event display of a Pb+Pb collision in ALICE at LHC (Source)

• Abundances of different species of produced hadrons
• Their momentum distributions
• More recently, event-by-event particle number fluctuations 15/38

https://cds.cern.ch/record/2032743


Is equilibrium reached in heavy-ion collisions?
Thermal Model – ideal gas of all known hadrons (∼ 400 species)

Ni ∝ exp
(
−mi

T

)
exp

(
−bi µB

T

)

A. Andronic, P. Braun-Munzinger, J. Stachel, Phys. Lett. B 673, 142 (2009)

• Good (10% level) description across several orders of magnitude
• Maps heavy-ion collisions on T -µB QCD phase diagram
• T ∼ 150 MeV ∼ 1012 K – hottest fluid ever created in a lab! 16/38



Limitations of Thermal Model
Standard Thermal Model has no interactions between hadrons
and no phase transitions
Therefore it cannot shed light on QCD phase structure

We need a model with phase transition(s) and interactions to define
and analyze sensitive observables 17/38



van der Waals equation
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van der Waals equation

P(T ,V ,N) = NT
V − bN − a N2

V 2

Formulated in
1873.

Simplest model which contains
attractive and repulsive interactions

Contains 1st order phase transition and
critical point Nobel Prize in

1910.

1. Short-range repulsion: excluded volume (EV) procedure

V → V − bN, b = 44πr3
c

3
2. Intermediate range attraction in mean-field approx.

P → P − a n2, a = π

∫ ∞
2rc

|U12(r)|r2dr

Motivation:
• Toy model to study fluctuations near critical point
• Include essential features of nuclear matter physics 18/38



van der Waals equation

• vdW isotherms show irregular behavior below certain temperature TC
• Below TC isotherms are corrected by Maxwell’s rule of equal areas
• Results in appearance of mixed phase
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Statistical ensembles
vdW equation originally formulated in the canonical ensemble

Canonical ensemble (CE)

• System of N particles in fixed volume V exchanges energy with large
reservoir (heat bath)

• State variables: T , V , N
• Thermodynamic potential – free energy F (T ,V ,N) = −T log Z (T ,V ,N)

Grand canonical ensemble (GCE)

• System of particles in fixed volume V exchanges both energy and particles
with large reservoir (heat bath)

Ξ(T ,V , µ) =
∑

N
eµN/T Z (T ,V ,N)

• State variables: T , V , µ. Chemical potential µ regulates average 〈N〉
• Thermodynamic potential – pressure p(T , µ) = T

V log Ξ(T ,V , µ)

GCE is more natural for systems with variable numbers of particles that cannot be
externally regulated, such as those created in heavy-ion collisions 20/38



From the CE to the GCE
How to transform the CE pressure P(T ,V ,N) into the GCE pressure P(T , µ)?

• Calculate µ(T ,V ,N) from standard TD relations
• Invert the relation to get N(T ,V , µ) and put it back into P(T ,V ,N)

Result: transcendental equation for n(T , µ)

N
V ≡ n(T , µ) = nid(T , µ∗)

1 + b nid(T , µ∗) , µ∗ = µ − b n T
1− b n + 2a n

nid(T , µ∗) = (g/λ3
dB) eµ∗/T

• Implicit equation in the GCE, now depends on mass and degeneracy
• May have multiple solutions below TC

• Choose one with largest pressure – equivalent to the Maxwell rule in CE

Advantages of the GCE formulation
1. High-energy physics applications: number of hadrons usually not conserved.
2. CE cannot describe particle number fluctuations. N-fluctuations in a small

(V � V0) subsystem follow GCE results.
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Scaled variance for classical vdW equation
New application: Particle number fluctuations within the GCE

ω[N] = 〈N
2〉 − 〈N〉2
〈N〉 =

[
1

(1− bn)2 −
2an
T

]−1
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• Repulsive interactions suppress N-fluctuations
• Attractive interactions enhance N-fluctuations

V.V., Anchishkin, Gorenstein, J. Phys. A 48, 305001 (2015) 22/38



Classical vdW equation: Skewness

Skewness: Sσ = 〈(∆N)3〉
σ2 = ω[N] + T

ω[N]

(
∂ω[N]
∂µ

)
T
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Skewness is
• Positive (right-tailed) in gaseous phase
• Negative (left-tailed) in liquid phase

V.V., R. Poberezhnyuk, D. Anchishkin, M. Gorenstein, J. Phys. A 49, 015003 (2016) 23/38



Classical vdW equation: Kurtosis

Kurtosis: κσ2 = 〈(∆N)4〉 − 3 〈(∆N)2〉2

σ2 peakedness
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Kurtosis is negative (flat) above critical point (crossover), positive (peaked)
elsewhere and very sensitive to the proximity of the critical point

V.V., R. Poberezhnyuk, D. Anchishkin, M. Gorenstein, J. Phys. A 49, 015003 (2016) 24/38



Search for CP in heavy-ion collision experiments
Experimental search for QCD CP using non-Gaussian fluctuations is underway

Measurements at BNL-STAR and CERN-NA61/SHINE experiments
X. Luo (STAR collaboration), Quark Matter 2015 conference

Interpretation challenging, many “background” things contribute
No definitive conclusions regarding the location or existence of QCD CP yet
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Quantum van der Waals equation
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Nucleon-nucleon interaction

Nucleon-nucleon potential:
• Repulsive core at small distances

Vector ω meson exchange

• Attraction at intermediate distances
Scalar σ meson exchange

• Suggestive similarity to vdW interactions
• Could nuclear matter be described by the
vdW equation?

Standard vdW equation is for Boltzmann statistics
Nucleons are fermions, obey Pauli exclusion principle
Nuclear matter corresponds to small temperatures and high densities
Unlike for most classical fluids, quantum statistics is important here
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Quantum statistical van der Waals fluid
Free energy of classical vdW fluid:

F (T ,V ,N) = F id(T ,V − bN,N)− a N2

V
Ansatz: F id ⇒ F id

q (T ,V − bN,N) is free energy of ideal quantum gas
Quantum van der Waals equation:

p(T , n) = pid
q

(
T , n

1− bn

)
− an2

pid
q (T , n) corresponds to Fermi-Dirac or Bose-Einstein distribution
Model properties:

• Reduces to the classical vdW equation when quantum statistics are negligible
• Reduces to ideal quantum gas for a = 0 and b = 0
• Entropy density non-negative and s → 0 with T → 0

V.V., Anchishkin, Gorenstein, Phys. Rev. C 91, 064314 (2015)
K. Redlich, K. Zalewski, Acta Phys. Polon. B 47, 1943 (2016)
a=0 ⇒ (quantum) excluded-volume model, D. Rischke et al., Z. Phys. C 51, 485 (1991)
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Nuclear matter as a fermionic vdW nucleon fluid

How to fix a and b for nucleons? For classical fluid usually tied to CP location.
Different approach: Reproduce saturation density and binding energy at T = 0

n0 = 0.16 fm−3, E/A = −16 MeV ⇒ a ∼= 329 MeV fm3 and b ∼= 3.42 fm3
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Nuclear matter as a quantum vdW nucleon fluid

Predictions for finite temperature behavior
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Critical point at Tc ∼= 19.7 MeV and nc ∼= 0.07 fm−3

Experimental estimate1: Tc = 17.9± 0.4 MeV, nc = 0.06± 0.01 fm−3

1J.B. Elliot, P.T. Lake, L.G. Moretto, L. Phair, Phys. Rev. C 87, 054622 (2013)
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QvdW fluid of nucleons: (T , µ) plane
(T , µ) plane: structure of critical fluctuations χi = ∂ i (p/T 4)/∂(µ/T )i

8 8 0 8 9 0 9 0 0 9 1 0 9 2 0 9 3 00
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0

l i q u i d

T (
Me

V)

µ  ( M e V )

g a s

n  ( f m - 3 )

0 . 0 0

0 . 0 2

0 . 0 4

0 . 0 7

0 . 0 9

0 . 1 1

0 . 1 3

0 . 1 6

0 . 1 8

( a )
8 8 0 8 9 0 9 0 0 9 1 0 9 2 0 9 3 00
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0

χ 2 / χ 1

1 0

2

1 0 . 5

l i q u i d

T (
Me

V)

µ  ( M e V )

g a s
0 . 1

ω[ N ]

0 . 0 1
0 . 1

1

1 0

8 8 0 8 9 0 9 0 0 9 1 0 9 2 0 9 3 00
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0

χ 3 / χ 2
- 1

1 0

1

0 - 1

l i q u i d

T (
Me

V)

µ  ( M e V )

g a s

- 1 0

S σ

- 4 0
- 1 0

- 1
01

1 0
4 0

8 8 0 8 9 0 9 0 0 9 1 0 9 2 0 9 3 00
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0

χ 4 / χ 2

- 1 0 0
1 0 01 0 01 0

1

1 0

10- 1

l i q u i d

T (
Me

V)

µ  ( M e V )

g a s

- 1 0
κσ2

- 4 0
- 1 0

- 1
01

1 0
4 0

V.V., D. Anchishkin, M. Gorenstein, R. Poberezhnyuk, PRC 91, 064314 (2015) 30/38



QvdW gas of nucleons: skewness and kurtosis
QvdW Skewness
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NJL, J.W. Chen et al., PRD 93, 034037 (2016) PQM, V. Skokov, QM2012

Fluctuation patterns in vdW very similar to effective QCD models with CP
This illustrates universality of the critical behavior
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Quantum real gas models
Modifications of the classical vdW equation

p(T , n) = nT
1− bn − an2 ⇒ p(T , n) = nT g(bn)− an2

u(T , n)
yield a class of real gas models that give more quantitative description.
Examples: Redlich-Kwong-Soave, Peng-Robinson, Carnahan-Starling models

Quantum real gas: F (T ,V ,N) = F id
q [T ,V f (bn),N]− N u(T , n; a, b, . . .)
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Quantum real gas models extend the applicability to higher densities
V.V., Phys. Rev. C 96, 015206 (2017)
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Multi-component quantum van der Waals equation
Classical multi-component vdW equation (most “general” form)

p(T , n1, . . . , nf ) =
∑

i

T ni
1−

∑
j bji nj

−
∑
i,j

aij ni nj .

Quantum statistical version, following the same procedure

p(T , n1, . . . , nf ) =
∑

i
pid

q,i

(
T , ni

1−
∑

j bji nj

)
−
∑
i,j

aij ni nj .

Grand canonical ensemble formulation,
p(T , µ) =

∑
i

pid
i (T , µ∗i )−

∑
i,j

aij ni nj ,∑
j

[δij + bji nid
i (T , µ∗i )] nj = nid

i (T , µ∗i ), i = 1 . . . f ,

µ∗i +
∑

j
bij p∗j −

∑
j

(aij + aji ) nj = µi , i = 1, . . . , f ,

describes chemical equilibrium in multi-component interacting system where
number of independent chemical potentials is smaller than number of species.

V.V., A. Motornenko, P. Alba, et al., Phys. Rev. C 96, 045202 (2017) 33/38



Thermal Model with van der Waals interactions

Let us include vdW interactions into the Thermal Model:
Thermal Model with attractive and repulsive vdW interactions between baryons

1 0 0 1 1 0 1 2 0 1 3 0 1 4 0 1 5 0 1 6 0 1 7 0 1 8 0 1 9 0 2 0 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

1 . 2

1 . 4

 L a t t i c e  Q C D
 I - H R G
 E V - H R G ,  r B  =  0 . 5 9  f m
 V D W - H R G ,  r B  =  0 . 5 9  f m ,  a  =  3 2 9  M e V  f m 3 ( a )

µB = 0

χB 4/χ
B 2

T  ( M e V )
0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 00

2 0
4 0
6 0
8 0

1 0 0
1 2 0
1 4 0
1 6 0
1 8 0

n u c l e a r
m a t t e r

l a t t i c e  Q C D

T (
Me

V)
µ B  ( M e V )

χB
4 / χB

2

- 1 0

0
1

2

1 0

h e a v y - i o n - c o l l i s i o n s

vdW interactions capture the drop of net baryon kurtotsis seen in lattice QCD
simulations at µB = 0
A shockingly strong effect of vdW interactions on fluctuation observables in
heavy-ion collisions!

V.V., M. Gorenstein, H. Stoecker, Phys. Rev. Lett. 118, 182301 (2017)
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Quantum van der Waals equation and atomic He-4

What about atomic systems? Let’s take atomic He-4!
Spin 0 ⇒ g = 1, Bose-Einstein statistics, is known to undergo a
liquid-gas transition

First, take classical vdW equation
Critical point: Tc = 8a

27b ≈ 5.2 K, Pc = a
27b2 ≈ 0.229 MPa

Experiment: Tc ≈ 5.2 K, Pc ≈ 0.227 MPa
35/38



Quantum van der Waals equation and atomic He-4

Critical isotherm: classical vdW
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So far, so good...

A reasonable description of liquid-gas transition in atomic He-4
requires explicit treatment of Bose-Einstein effects
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Quantum van der Waals equation and atomic He-4

Critical isotherm: classical vdW vs quantum vdW
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So far, so good... not anymore!
A reasonable description of liquid-gas transition in atomic He-4
requires explicit treatment of Bose-Einstein effects 36/38



Phase diagram of atomic He-4 within Skyrme model

Applying model from nuclear physics to an atomic system
Skyrme model: p(T , n) = pid

q (T , n)︸ ︷︷ ︸
ideal gas

+ α n2︸︷︷︸
attraction

− β n2+γ︸ ︷︷ ︸
repulsion

, α, β, γ > 0

Skyrme model Empirical

A (semi) reasonable description of the phase diagram

Tools from nuclear physics are useful for atomic systems

by Anton Motornenko
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Summary

• Thermodynamically consistent formulation of the quantum
statistical van der Waals equation in the grand canonical ensemble
opens new applications in the field of high energy nuclear physics

• Enhanced particle number fluctuations, as well as a
non-monotonic response of their skewness and kurtosis to the
control parameters of an experiment, signal the presence of a
phase transition and critical point

• van der Waals like interactions between nucleons/baryons are
surprisingly important for observables in high-temperature QCD

• Reasonable description of liquid-gas transition in atomic He-4
must take into account the Bose-Einstein statistics and
condensation

Thanks for your attention!

38/38



Summary

• Thermodynamically consistent formulation of the quantum
statistical van der Waals equation in the grand canonical ensemble
opens new applications in the field of high energy nuclear physics

• Enhanced particle number fluctuations, as well as a
non-monotonic response of their skewness and kurtosis to the
control parameters of an experiment, signal the presence of a
phase transition and critical point

• van der Waals like interactions between nucleons/baryons are
surprisingly important for observables in high-temperature QCD

• Reasonable description of liquid-gas transition in atomic He-4
must take into account the Bose-Einstein statistics and
condensation

Thanks for your attention! 38/38



Backup slides

38/38


	Introduction
	Summary
	Appendix

