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Bose-Einstein condensation
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Pion condensation

The relevant QCD degrees of freedom at low energies are pions

Mot ::|:,LL/, n/:(nu—nd)/2 @@

Isospin

* chiral perturbation theory ( T=0) [D.T. Son, M. Stephanov, PRL ‘01]
* vacuum at p_+ < mg
« BEC at pu_+ = m, (2" order phase transition)
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Lattice QCD L chirol crossover | X0 Z
* no sign problem at finite y; 160§
* physical quark masses achieved > I
e consistent with yPT predictions 2 140

= - hadrons pion

- condensation /

120 /

i | 1 1 I 1 1 1 I 1 W

0.2 0.4
[Brandt, Endrodi, Schmalzbauer, PRD 18] W /2m



Pion condensation and heavy-ion collisions

Low-p+ enhancement of pions
produced in Pb-Pb collisions at LHC
energies relative to hydro predictions

Data/Model

Figure from Devetak et al., JHEP 20

-~

ALICE 1303.0737
N 0O0-5%

0.55—

\ 05-10% x 10"
| A 10-20% x 102
¢ 20-30% x 10°

21



Pion condensation and heavy-ion collisions

Low-p; enhancement of pions
produced in Pb-Pb collisions at LHC
energies relative to hydro predictions

Formation of a pion condensate may

explain the data?
[Begun, Florkowski, Rybczynski, PRC '14, '15]

But requires strong non-equilibrium
effects, e.g. an off-equilibrium
hadronization of quark-gluon plasma

[Rafelski, Letessier, et al., EPJA '08, PRC ‘13]

Data/Model
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Figure from Devetak et al., JHEP 20
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arly Universe

HISTORY OF THE UNIVERSE A

Dark energy

accelerated

expansion
Structure

Cosmic Microwave !
formation

Background radiation
Accelerators || is visible
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t = Time (seconds, years)

E = Energy of photons (units GeV = 1.6 x 10~10 joules)
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FE e ——" ated in a 1986 paper by Michael Turner Particle Data Group, LBNL © 2015 Supported by DOE

QCD epoch: ~10 MeV < T < ~100 GeV



Cosmic trajectories

conservation equations for isentropic expansion

ng n ng,
B_p 2,
S S S

=1y (ae{epu,7})
trajectory is a line in 6-dim space of temperature and chemical potentials
Ty wpe, HQs ML,

empirical constraints (CMB anisotropies)

b = (8.60 4+ 0.06) - 10~ e + 1, + 1] < 0.012

[Planck collab., 1502.01589] [Oldengott, Schwarz, 1706.01705]

equation of state (QCD epoch)

P =~ pQcp + Pleptons + Pphotons
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Cosmic trajectories

conservation equations for isentropic expansion

ng n ng,
B_p 2,
S S S

=1y (ae{epu,7})

trajectory is a line in 6-dim space of temperature and chemical potentials

T7 we, HQ, HL,

empirical constraints (CMB anisotropies)

b = (8.60 4+ 0.06) - 10~ e + 1, + 1] < 0.012

[Planck collab., 1502.01589] [Oldengott, Schwarz, 1706.01705]

equation of state (QCD epoch)

P =~ pQcp + Pleptons + Pphotons

Pion condensation may occur if |uQ| >m, at T < 160 MeV
21



Modeling the cosmic equation of state

P =~ pQcp + Pleptons + Pphotons

* leptons

Pieptons( T 4@, fi1,) = Z P(T, pa pe,) + P (T, )] + antiparticles

ac{e,u,7}
e photons
2
718
N=—T¢%
Pv( ) 45
« QCD?
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Modeling the cosmic equation of state

P =~ pQcp + Pleptons + Pphotons

* leptons

pleptons( T, HQ, ,LLLQ) - Z [P:S( T, HQ, ,LLLa) + ,D,dea(T, M., )} + antiparticles

ac{e,u,7}
e photons
2
R !

PW(T) T T
e QCD?
The model of choice for hadronic matter is
hadron resonance gas (HRG)

Strategy: Implement pion-pion interactions into the HRG model to account
for the pion-condensed phase

21



Effective mass model for pion condensation

* A quasiparticle picture: pion interactions are driven by effective mass:

P (T, iy m*) = PR(T, s m*) + pr(m”)

rearrangement term

m*(T, ) from gap equation: pi(m*) = n4(T, pir; m*)

scalar density

* Onset of pion condensation takes place when chemical potential becomes equal to
the effective mass, u, = m*. This gives the Bose-Einstein condensation line:

Teond(fir) : Pr(pn) = N Teond (fin), por; M* = piz]

e T <T.onq: a fraction of pions forms a Bose-Einstein condensate, n, = n;h + nEEC

w = (T s M = i) ne-- = pi(p) = g (T, pimi m* = fir)

thermal pions condensed pions

n

The specific form of the rearrangement term ps(m™) defines the model

more details: [Barz et al., Phys. Rev. D 40 (1989) 157; Savchuk et al., Phys. Rev. C 102 (2020) 035202] 21



Effective mass model: T =0

No thermal excitations at T = 0, only condensed pions at u,; > m;

YPT:

nEM(T =0, ur) = P;(NW) ‘9(:“7 - m7r)

14

nxPT( T = Ov MW)
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[D.T. Son, M. Stephanov, PRL ‘01]

Match the effective mass model to chiral perturbation theory at T = 0

( \ 04 T=0
2
_ uaf? my . 02
pr (i) = S -
4 Hor > 0.0
& .
G
= ~ -0.2}
\ f” 133 MeV j — Effective mass model (xPT)
-04 Lattice QCD
0.0 05 1.0 15 2.0
. : A MrlMp
Lattice data from Brandt, Endrodi, et al., 1802.06685, PRD ‘18
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Effective mass model: Phase diagram

* Pion condensation boundary

* Qualitatively similar to lattice QCD

* Not as abrupt leveling off as on lattice*

Model has no deconfinement, thus not
reliable at T > 160 MeV

 QOrder of the transition

*See PQM type models for a more involved modeling of the transition line [Adhikari, Andersen, Kneschke, 1805.08599]

Kink in n;(u;) at zero temperature
— 2"d order phase transition

Does not turn 15t order at finite T

Consistent with lattice QCD observations
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HRG model with pion interactions

paco( T g, o) = Y pE"(T ) + > p(T. ).

icnrt 70 J
interacting pions free hadrons and resonances

21



HRG model with pion interactions

paco( T g, o) = Y pE"(T ) + > p(T. ).

ien®t w0

interacting pions freeJhadrons and resonances
« Al =I(T,u)—I(T,0), I=¢—3p (A=A
160 ‘ !
* Two lattice spacings: N; = 10, N = 12 .
= -5
= 140 SiEs
« Validity range of the model: - Py
[ T <160 MeV, u; <1.5m, ] 120
0 0.5 1 1.5

B /My

0 0.5 1 15 9 0 0.5 1 15 9
pr/mz [MeV] pr/mz [MeV]

The lattice data and comparison details: VV, Brandt, Cuteri, Endrodi, Hajkarim, Schaffner-Bielich, 2009.02309 21



Calculating the cosmic trajectories

Early universe

Supported by DOE

Particle Data Group, LBNL © 2015

Accelerators
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P =~ pqQcp + Pleptons + Pphotons
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Calculating the cosmic trajectories

Early universe Heavy-ion collision

final detected
particle distributions
T ~ 1015 fmic=

\

A
Supported by DOE

Dark &nergy
accelerated
expansion

free
streaming

Structure
formation

Kinetic
freeze-out \
hadron
cascade

T~ 10 fm/c = iSS, UrQMD

Cosmic Microwave

is visible
Particle Data Group, LBNL © 2015

Hadronization

viscous
hydrodynamic
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Initial energy
density

Accelerators
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superMC

P = PQcD + Pleptons + Pphotons P = PQcD
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Calculating the cosmic trajectories

Early universe Heavy-ion collision

final detected
particle distributions

T ~ 1015 fmtc

Supported by DOE

free
|/ streaming

Kinetic
freeze-out \
hadron
cascade

T~ 10 fm/c > iSS, UrQMD
=,

Particle Data Group, LBNL © 2015

Hadronization

viscous
hydrodynamic

VISH2+1
t~1fm/c
Initial energy
density
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ynamics
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P = PQcD + Pleptons + Pphotons P = PQcD

Cosmic trajectories implemented within (extended) Thermal-FIST package %‘;

[V.V., H. Stoecker, Computer Physics Communications 244, 295 (2019)|
https://github.com /vlvovch/Thermal-FIST


https://github.com/vlvovch/Thermal-FIST
https://doi.org/10.1016/j.cpc.2019.06.024

T [MeV]

Lepton-flavor symmetric case

First consider [, =1, =1, =1/3
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pion-condensed phase

200 300 400

1y [MeV]

* Pion condensation in the symmetric scenario occurs if |l| > ~0.15

* However, this violates the empirical constraint |I| < 0.012

Outside pion-condensed region reproduces HRG model results of [M. Wygas et al., PRL "18; 2009.00036]
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Lepton-flavor asymmetric case

T [MeV]
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onset of pion condensation
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* Individual lepton flavor asymmetries
are much less constrained

» Set total lepton asymmetry to zero
but vary individual flavor ones

le+ 1, +1, =0 but l, 1L, # 1,

* 2D scanin (l,+1,, 1, — 1)

Pion condensation occurs if

(s nzo1)
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Lepton-flavor

asymmetric case: Cosmic EoS

40 —

Full
----QCD only

(e-3p)/T*

=
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0.00 S R

80 100
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e Cosmic equation of state
affected strongly by large
lepton asymmetry

* Pion condensation leads to
(nearly) negative interaction
measure and ¢Z > 1/3

* At higher temperatures
large I/T* driven by heavy
tau leptons
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Primordial gravitational waves (PGW)

10—12
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 Enhanced relic density of primordial gravitational waves (relative to
amplitude at [, + 1, = 0)

* Possibly reachable by SKA over 10-20 years of operation 21



Primordial black holes (PBHs)

0.001
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* Changed fraction of primordial black holes heavier than solar mass
* Pion condensation epoch is a source of PBHs?

« Speculation: BHs merger event LIGO GW190521
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Pion stars

* Pion stars are gravitationally
bound objects whose main
constituent is the Bose-Einstein

©
condensate of charged pions =

[Carignano et al., 1610.06097; Brandt et al., 1802.06685; E 10
Andersen, Kneschke, 1807.08951]

100

* Pion condensation serves as a
primordial production mechanism 1

104 10°
R [km]
Figure from Brandt et al., 1802.06685

* |If pion stars decay around the time of BBN, the produced high energy
leptons would influence the primordially produced nuclei

21



Summary

e The early universe passes through a pion-condensed phase if electron
and muon lepton asymmetry is sufficiently large:

[le+lu > O.1J

* Implications:

» Enhanced relic density of primordial gravitational waves (relative to amplitude at
le +1,=0)

* Changed fraction of primordial black holes with mass larger than M 5

* Possible formation and decay of pion stars, effect on big bang nucleosynthesis

22



Summary

e The early universe passes through a pion-condensed phase if electron
and muon lepton asymmetry is sufficiently large:

[le+lu > O.1J

* Implications:

» Enhanced relic density of primordial gravitational waves (relative to amplitude at
le +1,=0)

* Changed fraction of primordial black holes with mass larger than M 5

* Possible formation and decay of pion stars, effect on big bang nucleosynthesis

Thank you!
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