Recent results on light nuclei production in extended thermal model descriptions

Volodymyr Vovchenko

Lawrence Berkeley National Laboratory

The 110th HENPIC seminar

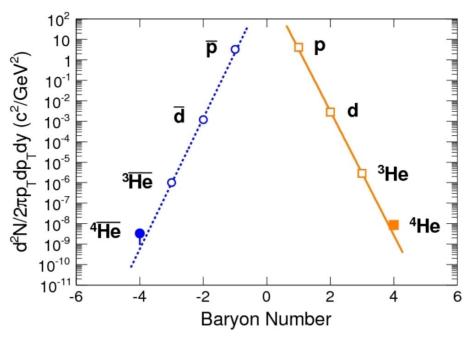
Jun 25, 2020

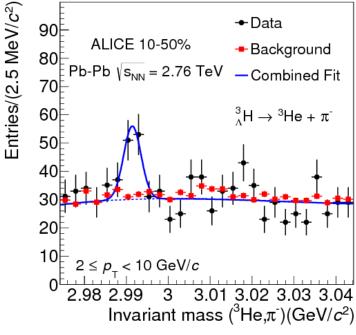
Outline

1. Short intro to thermal model and Thermal-FIST 😭

- 2. Light nuclei in extended thermal model descriptions
 - Canonical suppression
 - The Saha equation approach
 - Feeddown contributions from excited nuclear states
- 3. Summary

Loosely-bound objects in heavy-ion collisions





[STAR collaboration, Nature 473, 353 (2011)]

[ALICE Collaboration, PLB 754, 360 (2016)]

binding energies: 2 H, 3 He, 4 He, $^3_\Lambda$ H: 2.22, 7.72, 28.3, 0.130 MeV $\ll T \sim 150$ MeV "snowballs in hell"

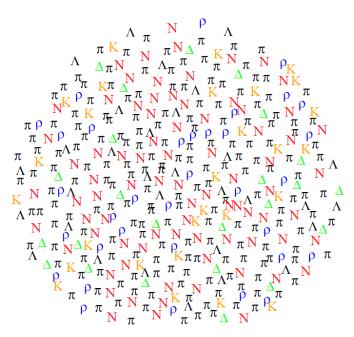
The production mechanism is not established. Common approaches include **thermal** nuclei emission together with hadrons [Andronic et al., PLB '11;...] or final-state **coalescence** of nucleons close in phase-space [Butler, Pearson, PRL '61; Scheibl, Heinz, PRC '99;...]

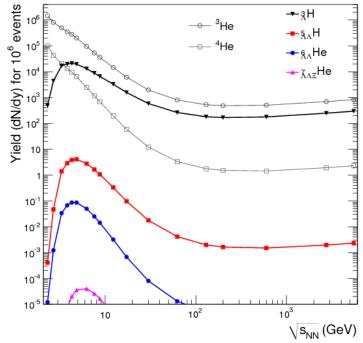
Hadron resonance gas (HRG) at freeze-out

HRG: Equation of state of hadronic matter as a multi-component (non-)interacting gas of known hadrons, resonances, and *light nuclei*

$$\ln Z \approx \sum_{i \in M, B} \ln Z_i^{id} = \sum_{i \in M, B} \frac{d_i V}{2\pi^2} \int_0^\infty \pm p^2 dp \ln \left[1 \pm \exp\left(\frac{\mu_i - E_i}{T}\right) \right]$$

Grand-canonical ensemble: $\mu_i = b_i \mu_B + q_i \mu_Q + s_i \mu_S$ chemical equilibrium





[A. Andronic et al., PLB '12]

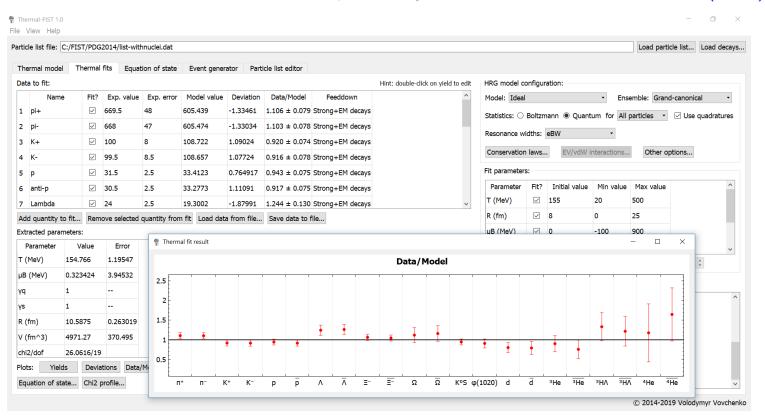
Thermal-FIST

Thermal-FIST* (a.k.a. FIST or FAUST)

C++/Qt/Jupyter

open source: https://github.com/vlvovch/Thermal-FIST

reference: V.V., H. Stoecker, Computer Physics Communications 244, 295 (2019)



A framework for general-purpose statistical-thermal model applications

Using Thermal-FIST

The package is cross-platform (Linux, Mac, Windows, Android) Installation using git and cmake

```
# Clone the repository from GitHub
git clone https://github.com/vlvovch/Thermal-FIST.git
cd Thermal-FIST
# Create a build directory, configure the project with cmake
# and build with make
mkdir build
cd build
cmake ../
make
# Run the GUI frontend
./bin/QtThermalFIST
# Run the test calculations from the paper
./bin/examples/cpc1HRGTDep
./bin/examples/cpc2chi2
./bin/examples/cpc3chi2NEQ
./bin/examples/cpc4mcHRG
```

GUI requires free Qt5 framework, the rest of the package has no external dependencies

Quick start guide

Documentation

Physics manual

Statistical-thermal model aspects in FIST

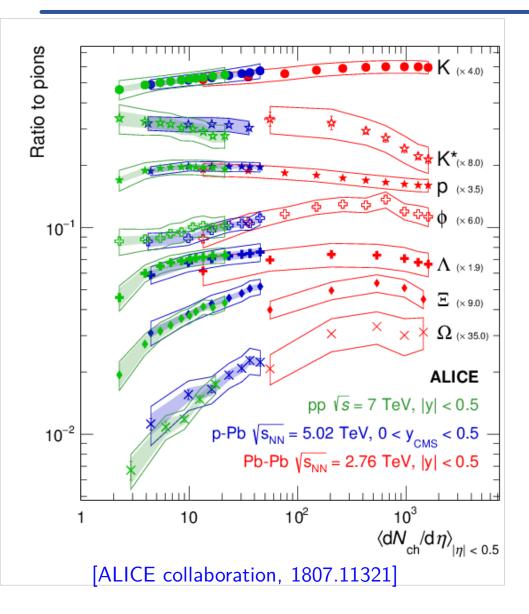
- Extensions of the HRG model
 - finite resonance widths
 - repulsive (excluded volume) and van der Waals (criticality) interactions
 - particle number fluctuations and correlations
 - chemical non-equilibrium (γ_q, γ_s) a la Rafelski
 - unstable nuclei.
- Equation of state
- Canonical statistical model (CSM)
 - (local) (selective) exact conservation of conserved charges
 - canonical suppression of light nuclei
- Monte Carlo generator (Blast-wave, canonical ensemble,...)
- Hadronic phase and dynamical freeze-out
 - partial chemical equilibrium
 - suppression of resonance yields
 - evolution of light nuclei abundances via the Saha equation

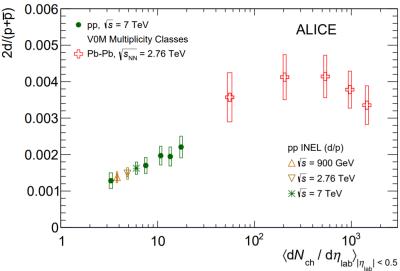
Statistical-thermal model aspects in FIST

- Extensions of the HRG model
 - finite resonance widths
 - repulsive (excluded volume) and van der Waals (criticality) interactions
 - particle number fluctuations and correlations
 - chemical non-equilibrium (γ_q, γ_s) a la Rafelski
 - unstable nuclei
- Equation of state
- Canonical statistical model (CSM)
 - (local) (selective) exact conservation of conserved charges
 - canonical suppression of light nuclei
- Monte Carlo generator (Blast-wave, canonical ensemble,...)
- Hadronic phase and dynamical freeze-out
 - partial chemical equilibrium
 - suppression of resonance yields
 - evolution of light nuclei abundances via the Saha equation

Canonical suppression of light nuclei at the LHC

Multiplicity dependence of hadrochemistry





[ALICE collaboration, 1902.09290]

- Grand-canonical thermal picture predicts no multiplicity dependence
- Apply canonical statistical model?

Canonical statistical model (CSM)

Exact conservation of B, Q, S in a correlation volume V_C

[Rafelski, Danos, et al., PLB '80; Hagedorn, Redlich, ZPC '85]

$$\mathcal{Z}(B,Q,S) = \int_{-\pi}^{\pi} \frac{d\phi_B}{2\pi} \int_{-\pi}^{\pi} \frac{d\phi_Q}{2\pi} \int_{-\pi}^{\pi} \frac{d\phi_S}{2\pi} \ e^{-i(B\phi_B + Q\phi_Q + S\phi_S)} \exp \left[\sum_j z_j^1 e^{i(B_j\phi_B + Q_j\phi_Q + S_j\phi_S)} \right]$$

$$z_{j}^{1} = V_{c} \int dm \, \rho_{j}(m) \, d_{j} \frac{m^{2} T}{2\pi^{2}} \, K_{2}(m/T)$$

 $\langle N_j^{
m prim}
angle^{
m ce}=rac{Z(B-B_j,Q-Q_j,S-S_j)}{Z(B,Q,S)}\,\langle N_j^{
m prim}
angle^{
m gce}$

[Becattini et al., ZPC '95, ZPC '97]

Implemented in Thermal-FIST for a full HRG

Canonical statistical model (CSM)

Exact conservation of B, Q, S in a correlation volume V_C

[Rafelski, Danos, et al., PLB '80; Hagedorn, Redlich, ZPC '85]

$$\mathcal{Z}(B,Q,S) = \int_{-\pi}^{\pi} \frac{d\phi_B}{2\pi} \int_{-\pi}^{\pi} \frac{d\phi_Q}{2\pi} \int_{-\pi}^{\pi} \frac{d\phi_S}{2\pi} \ e^{-i(B\phi_B + Q\phi_Q + S\phi_S)} \exp \left[\sum_j z_j^1 e^{i(B_j\phi_B + Q_j\phi_Q + S_j\phi_S)} \right]$$

$$z_j^1 = V_c \int dm \,
ho_j(m) \, d_j rac{m^2 T}{2\pi^2} \, K_2(m/T)$$

$$z_j^1 = V_c \int dm \,
ho_j(m) \, d_j rac{m^2 T}{2\pi^2} \, K_2(m/T)$$
 $\langle N_j^{
m prim}
angle^{
m ce} = rac{Z(B-B_j,Q-Q_j,S-S_j)}{Z(B,Q,S)} \, \langle N_j^{
m prim}
angle^{
m gce}$

[Becattini et al., ZPC '95, ZPC '97]

Implemented in Thermal-FIST for a full HRG

Exact conservation around midrapidity, $V_C = kdV/dy$. How large is k?

Canonical statistical model (CSM)

Exact conservation of B, Q, S in a correlation volume V_C

[Rafelski, Danos, et al., PLB '80; Hagedorn, Redlich, ZPC '85]

$$\mathcal{Z}(B,Q,S) = \int_{-\pi}^{\pi} \frac{d\phi_B}{2\pi} \int_{-\pi}^{\pi} \frac{d\phi_Q}{2\pi} \int_{-\pi}^{\pi} \frac{d\phi_S}{2\pi} \ e^{-i(B\phi_B + Q\phi_Q + S\phi_S)} \exp \left[\sum_j z_j^1 e^{i(B_j\phi_B + Q_j\phi_Q + S_j\phi_S)} \right]$$

$$\mathbf{z}_{j}^{1}=V_{c}\int dm\,
ho_{j}(m)\,d_{j}rac{m^{2}T}{2\pi^{2}}\,K_{2}(m/T)$$

 $z_j^1 = V_c \int dm \,
ho_j(m) \, d_j \frac{m^2 T}{2\pi^2} \, K_2(m/T)$ $\langle N_j^{\mathrm{prim}} \rangle^{\mathrm{ce}} = \frac{Z(B - B_j, Q - Q_j, S - S_j)}{Z(B, Q, S)} \, \langle N_j^{\mathrm{prim}} \rangle^{\mathrm{gce}}$

[Becattini et al., ZPC '95, ZPC '97]

Implemented in Thermal-FIST for a full HRG

Exact conservation around midrapidity, $V_C = kdV/dy$. How large is k?

Net-proton fluctuations affected by baryon number conservation

[Bzdak, Koch, Skokov, 1203.4529; Braun-Munzinger, Rustamov, Stachel, 1612.00702]

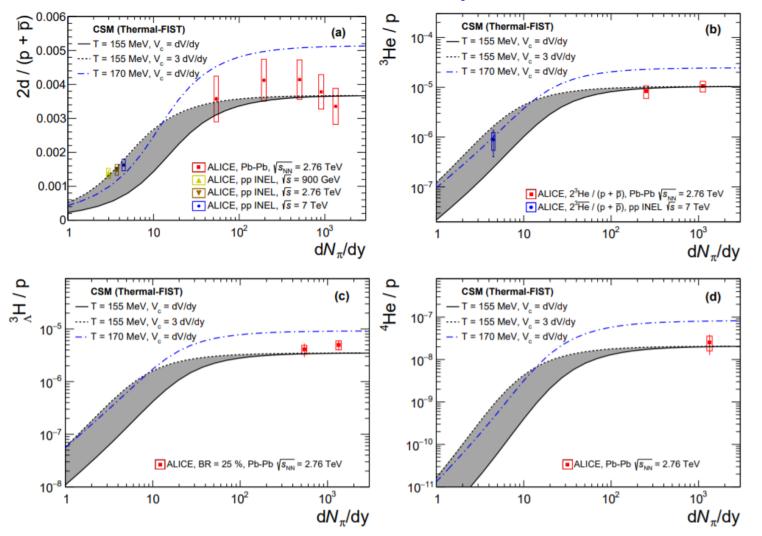
$$rac{\kappa_2(\mathsf{p}-ar{\mathsf{p}})}{\langle\mathsf{p}
angle+\langlear{\mathsf{p}}
angle}\simeq 1-rac{\langle\mathsf{p}
angle}{k\,dN_B/dy}$$

Using ALICE data for net-p fluctuations [1910.14396] one obtains $k \sim 3$ -4 for most of the centrality bins in Pb-Pb collisions

"Vanilla" CSM

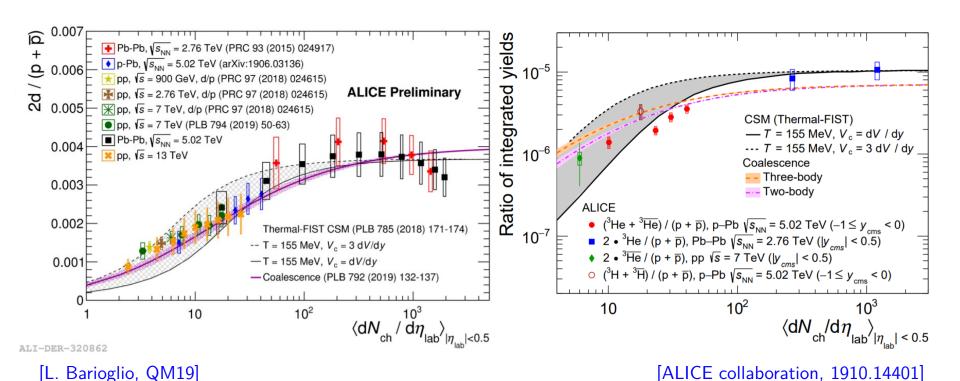
 $T_{ch} = 155$ MeV, $V_C = 3dV/dy$, multiplicity dependence driven by V_C only

[V.V., Dönigus, Stoecker, 1808.05245, PLB '18]



"Vanilla" CSM

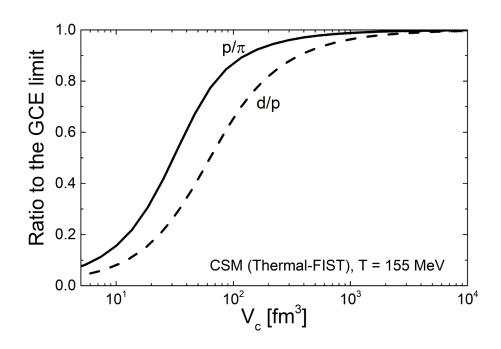
 $T_{ch}=155$ MeV, $V_C=3dV/dy$, multiplicity dependence driven by V_C only [V.V., Dönigus, Stoecker, 1808.05245, PLB '18]



Basic CSM appears to capture trends seen in light nuclei production data

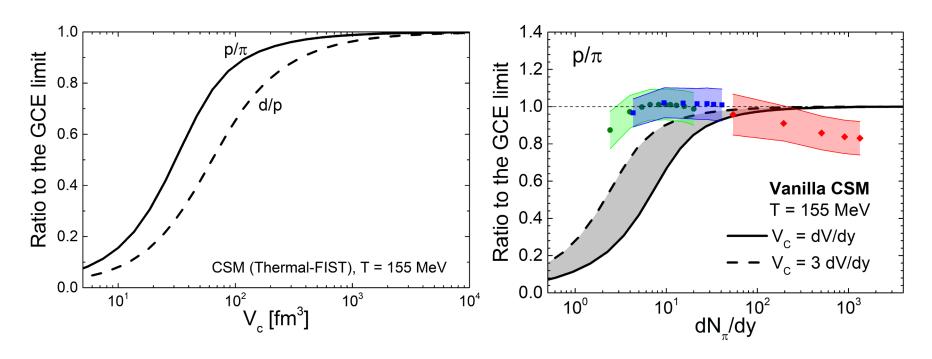
"Vanilla" CSM: nuclei vs p/π ratio

Canonical suppression affects not only nuclei, but also the p/π ratio The effect for p/π is generally milder than d/p, but not insignificant



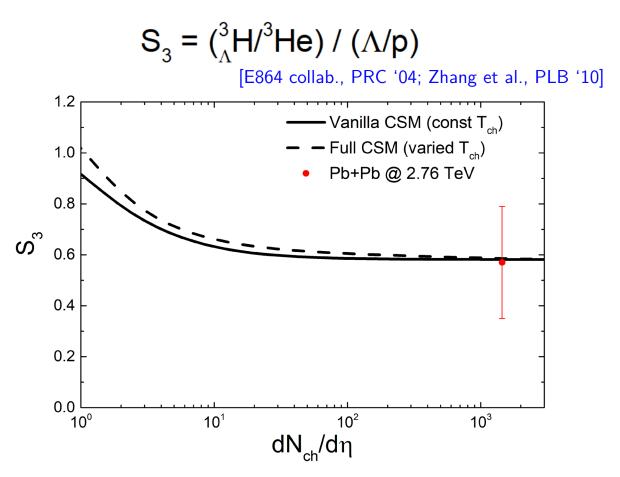
"Vanilla" CSM: nuclei vs p/π ratio

Canonical suppression affects not only nuclei, but also the p/π ratio The effect for p/π is generally milder than d/p, but not insignificant



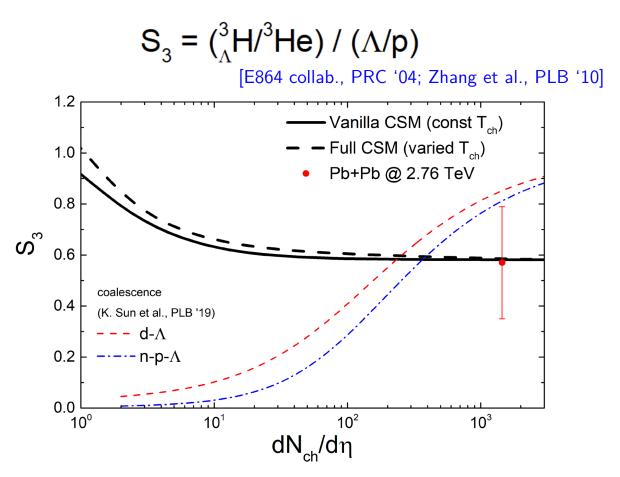
 p/π suppression predicted by vanilla CSM not supported by the data Simultaneous description of light nuclei and p/π ratio remains challenging

CSM: S₃



Different versions of CSM give similar predictions, mild increase of S_3 due to baryon and strangeness conservation

CSM: S₃



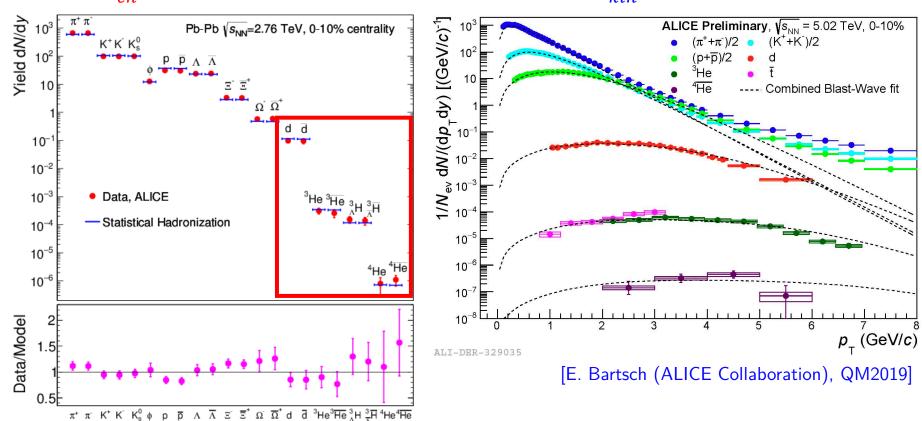
Different versions of CSM give similar predictions, mild increase of S_3 due to baryon and strangeness conservation

Coalescence [Sun, Dönigus, Ko, PLB '19] predicts opposite trend

Hadronic phase and the Saha equation approach to light nuclei production

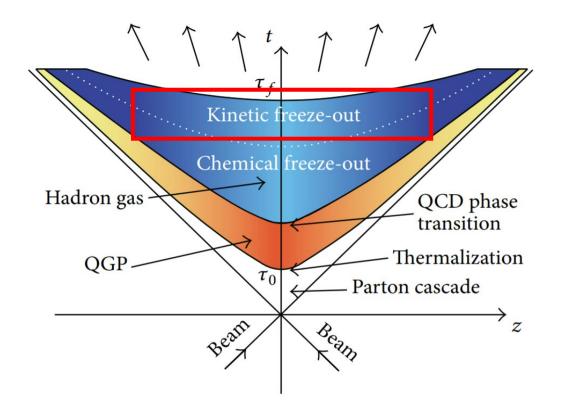
Two experimental observations at the LHC

- 1. Measured yields are described by thermal model at $T_{ch} \approx 155$ MeV
- 2. Spectra described by blast-wave model at $T_{kin} \approx 100 120$ MeV



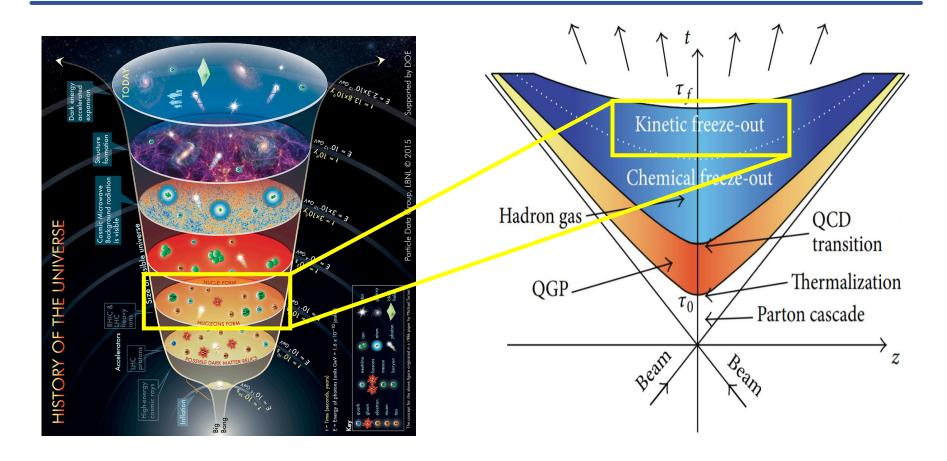
[A. Andronic et al., Nature **561**, 321 (2018)]

Hadronic phase in central HICs



- At $T_{ch} \approx 150 160$ MeV inelastic collisions cease, yields of hadrons frozen
- Kinetic equilibrium maintained down to $T_{kin} \approx 100-120~{\rm MeV}$ through (pseudo)elastic scatterings

Big Bang vs LHC "Little Bangs"



- Hadrons (nucleons) form and "freeze-out" chemically before nuclei
- Bosons (photons or pions) catalyse nucleosynthesis

e.g.
$$p + n \leftrightarrow d + \gamma$$
 vs $p + n + \pi \leftrightarrow d + \pi$

Ionization of a gas (one level)

$$X \longleftrightarrow X^+ + e^-$$

$$\frac{n_e^2}{n_0} = \frac{2}{\lambda_e^3} \frac{g_1}{g_0} \exp(-\epsilon/T) \qquad n_1 = n_e \qquad \lambda_e : \text{ deBroglie}$$

Megh Nad Saha, Phil. Mag. Series 6 40:238 (1920) 472

• Equivalently, chemical potentials: $\mu_0 = \mu_1 + \mu_e$

Ionization of a gas (one level)

$$X \longleftrightarrow X^+ + e^-$$

$$\frac{n_e^2}{n_0} = \frac{2}{\lambda_e^3} \frac{g_1}{g_0} \exp(-\epsilon/T)$$
 $n_1 = n_e$ λ_e : deBroglie

Megh Nad Saha, Phil. Mag. Series 6 40:238 (1920) 472

• Equivalently, chemical potentials: $\mu_0 = \mu_1 + \mu_e$

Nuclear equivalent: detailed balance in an expanding system (early universe/HIC)

Deuteron number evolution through $pnX \leftrightarrow dX$, in kinetic equilibrium

$$\frac{dN_d}{d\tau} = \left\langle \sigma_{dX} v_{rel} \right\rangle N_d^0 n_x^0 e^{\mu_p/T} e^{\mu_n/T} e^{\mu_X/T} - \left\langle \sigma_{dX} v_{rel} \right\rangle N_d^0 n_x^0 e^{\mu_d/T} e^{\mu_X/T}$$

Ionization of a gas (one level)

$$X \longleftrightarrow X^+ + e^-$$

$$\frac{n_e^2}{n_0} = \frac{2}{\lambda_e^3} \frac{g_1}{g_0} \exp(-\epsilon/T) \qquad n_1 = n_e \qquad \lambda_e : \text{ deBroglie}$$

$$n_1 = n_e$$

Megh Nad Saha, Phil. Mag. Series 6 40:238 (1920) 472

• Equivalently, chemical potentials: $\mu_0 = \mu_1 + \mu_e$

Nuclear equivalent: detailed balance in an expanding system (early universe/HIC)

Deuteron number evolution through $pnX \leftrightarrow dX$, in kinetic equilibrium

$$\frac{dN_d}{d\tau} = \left\langle \sigma_{dX} v_{rel} \right\rangle N_d^0 \, n_x^0 \, e^{\mu_p/T} \, e^{\mu_x/T} - \left\langle \sigma_{dX} v_{rel} \right\rangle N_d^0 \, n_x^0 \, e^{\mu_d/T} \, e^{\mu_x/T}$$
small big big

Ionization of a gas (one level)

$$X \longleftrightarrow X^+ + e^-$$

$$\frac{n_e^2}{n_0} = \frac{2}{\lambda_e^3} \frac{g_1}{g_0} \exp(-\epsilon/T)$$

$$n_1 = n_e$$

 $n_1 = n_e$ λ_e : deBroglie

Megh Nad Saha, Phil. Mag. Series 6 40:238 (1920) 472

• Equivalently, chemical potentials: $\mu_0 = \mu_1 + \mu_e$

Nuclear equivalent: detailed balance in an expanding system (early universe/HIC)

Deuteron number evolution through $pnX \leftrightarrow dX$, in kinetic equilibrium

$$\frac{dN_d}{d\tau} = \left\langle \sigma_{dX} v_{rel} \right\rangle N_d^0 \, n_x^0 \, e^{\mu_p/T} \, e^{\mu_n/T} \, e^{\mu_X/T} - \left\langle \sigma_{dX} v_{rel} \right\rangle N_d^0 \, n_x^0 \, e^{\mu_d/T} \, e^{\mu_X/T}$$

$$\textit{small} \qquad \qquad \textit{big} \qquad \qquad \textit{big}$$

gain
$$\approx$$
 loss \rightarrow $\mu_d \approx \mu_p + \mu_n$

Saha equation

= detailed balance

= law of mass action

Partial chemical equilibrium (PCE)

Expansion of hadron resonance gas in partial chemical equilibrium at $T < T_{ch}$ [H. Bebie, P. Gerber, J.L. Goity, H. Leutwyler, Nucl. Phys. B '92; C.M. Hung, E. Shuryak, PRC '98]

Chemical composition of stable hadrons is fixed, kinetic equilibrium maintained through pseudo-elastic resonance reactions $\pi\pi\leftrightarrow\rho$, $\pi K\leftrightarrow K^*$, $\pi N\leftrightarrow\Delta$, etc.

E.g.:
$$\pi + 2\rho + 3\omega + \cdots = const$$
, $N + \Delta + N^* + \cdots = const$, $K + K^* + \cdots = const$

Effective chemical potentials:

$$\tilde{\mu}_j = \sum_{i \in \text{stable}} \langle n_i \rangle_j \, \mu_i, \qquad \langle n_i \rangle_j$$
 – mean number of hadron i from decays of hadron j , $j \in \mathsf{HRG}$

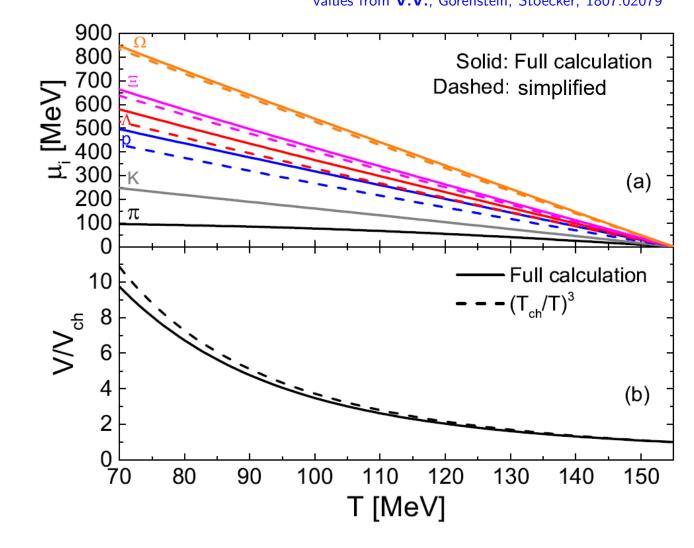
Conservation laws:

$$\sum_{j\in \mathsf{hrg}} \langle n_i \rangle_j \, n_j(T, \tilde{\mu}_j) \, V = N_i(T_{\mathsf{ch}}), \quad i \in \mathsf{stable} \qquad \qquad \mathsf{numerical \ solution} \\ \sum_{j\in \mathsf{hrg}} s_j(T, \tilde{\mu}_j) \, V = S(T_{\mathsf{ch}}) \qquad \qquad \{\mu_i(T)\}, \, V(T)$$

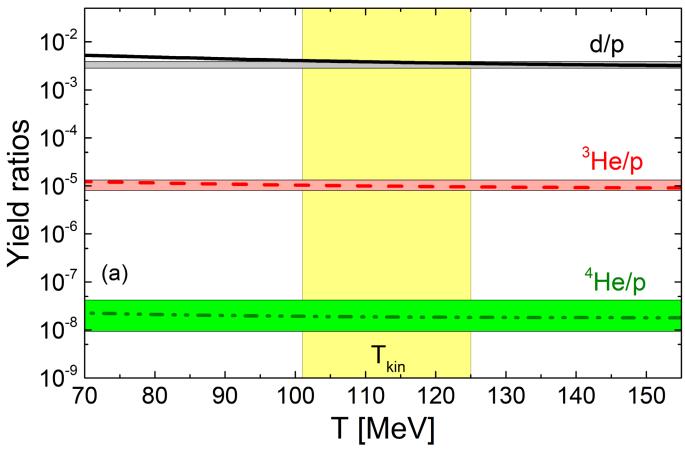
Numerical implementation of PCE in **Thermal-FIST**

Full calculation: parameters

"Initial conditions": $T_{ch} = 155$ MeV, $V_{ch} = 4700$ fm³ (chemical freeze-out) values from V.V., Gorenstein, Stoecker, 1807.02079



Full calculation: nuclei

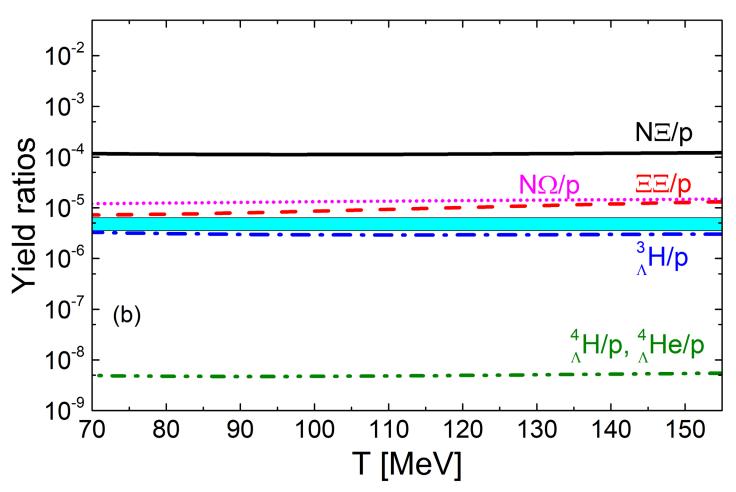


Deviations from thermal model predictions are moderate despite significant cooling and dilution. Is this the reason for why thermal model works so well?

Echoes earlier transport model conclusions for d [D. Oliinychenko, et al., PRC 99, 044907 (2019)]

For $T=T_{kin}$ similar results reported in [X. Xu, R. Rapp, EPJA 55, 68 (2019)]

Saha equation: hypernuclei

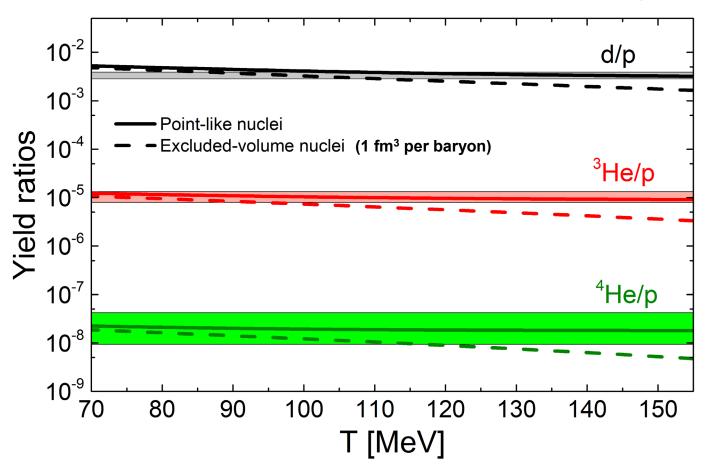


Hypernuclei stay close to the thermal model prediction. An exception is a hypothetical $\Xi\Xi$ state \leftarrow planned measurement in Runs 3 & 4 at the LHC

[LHC Yellow Report, 1812.06772]

Saha equation and excluded volume effects

Eigenvolumes: effective mechanism for nuclei suppression at large densities



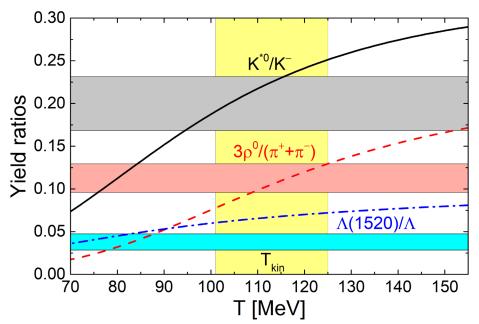
Excluded-volume effects go away as the system dilutes.

At $T \cong 100$ MeV agrees with the point-particle model and describes data.

At $T = T_{ch}$ does not describe data

Resonance suppression in hadronic phase

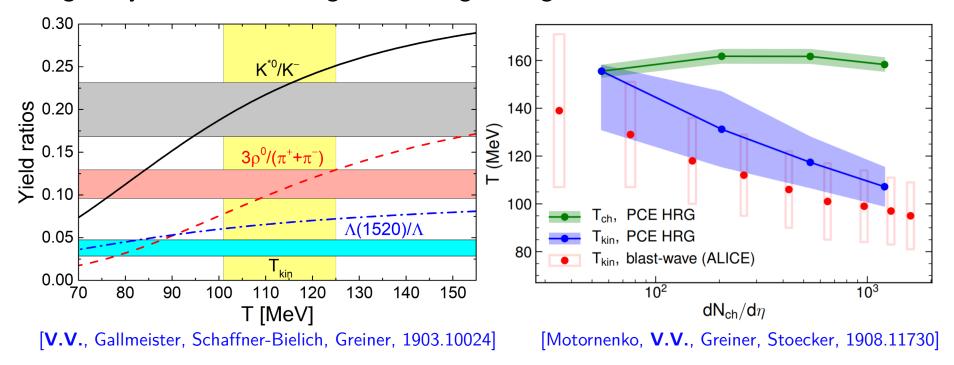
Yields of resonances are *not* conserved in partial chemical equilibrium E.g. K^* yield dilutes during the cooling through reactions $\pi K \leftrightarrow K^*$



[V.V., Gallmeister, Schaffner-Bielich, Greiner, 1903.10024]

Resonance suppression in hadronic phase

Yields of resonances are *not* conserved in partial chemical equilibrium E.g. K^* yield dilutes during the cooling through reactions $\pi K \leftrightarrow K^*$



Suppressed resonance yields are consistent with existence of hadronic phase

Fitting the yields of short-lived resonances is a new way to extract the kinetic freeze-out temperature

24

Saha equation vs rate equations

with D. Oliinychenko and V. Koch, to appear

Saha equation vs rate equations

with D. Oliinychenko and V. Koch, to appear

Saha equation vs rate equations

with D. Oliinychenko and V. Koch, to appear

$$\frac{dN_d}{d\tau} = \langle \sigma_{dX} v_{rel} \rangle \ N_d^0 \ n_x^0 \ e^{\mu_p/T} \ e^{\mu_x/T} - \langle \sigma_{dX} v_{rel} \rangle \ N_d^0 \ n_x^0 \ e^{\mu_d/T} \ e^{\mu_x/T}$$

$$= \frac{big}{Saha} \quad equation$$

$$gain \approx loss \rightarrow \mu_d \sim \mu_p + \mu_n = detailed \ balance$$

$$= law \ of \ mass \ action$$

Relax the assumption of equilibrium for $AX \leftrightarrow \sum_i A_i X$ reactions

Saha equation vs rate equations

- Pion catalysis of light nuclei reactions. Destruction through $A\pi \to \sum_i A_i\pi$ and creation through $\sum_i A_i\pi \to A\pi$. Detailed balance principle respected but relative chemical equilibrium not enforced
- Bulk hadron matter evolves in partial chemical equilibrium, unaffected by light nuclei

$$rac{d\mathcal{N}_{A}}{d au} = \langle \sigma_{A\pi}^{\mathsf{in}} v_{rel}
angle n_{\pi}^{\mathsf{pce}} \left(\mathcal{N}_{A}^{\mathsf{saha}} - \mathcal{N}_{A}
ight)$$

Static fireball: $n_{\pi}^{\rm pce}$, $N_A^{\rm saha}$, $\langle \sigma_{A\pi}^{\rm in} v_{rel} \rangle = const$

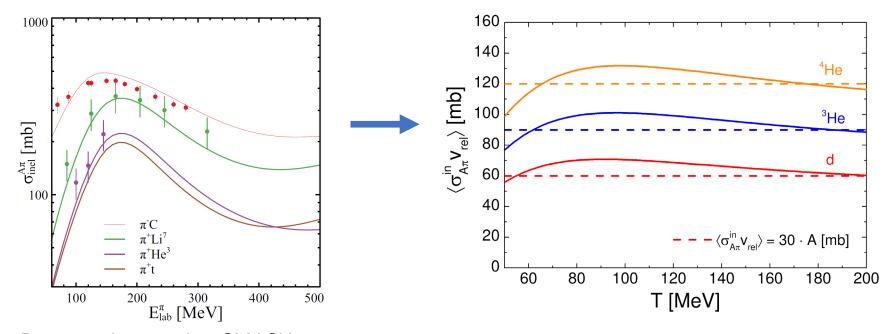
$$N_A(au) = N_A^{\mathsf{saha}} + \left(N_A(au_0) - N_A^{\mathsf{saha}}\right) e^{-rac{ au - au_0}{ au_{\mathsf{eq}}}}, \qquad au_{\mathsf{eq}} = rac{1}{\left<\sigma_{A\pi}^{\mathsf{in}} v_{\mathsf{rel}} \right> n_\pi^{\mathsf{pce}}}$$

Saha limit: $\tau_{eq} \to 0 \ (\sigma_{A\pi}^{\rm in} \to \infty)$

Model input

Cross sections

Optical model for $\sigma_{A\pi}^{\rm in}$ [J. Eisenberg, D.S. Koltun, '80]

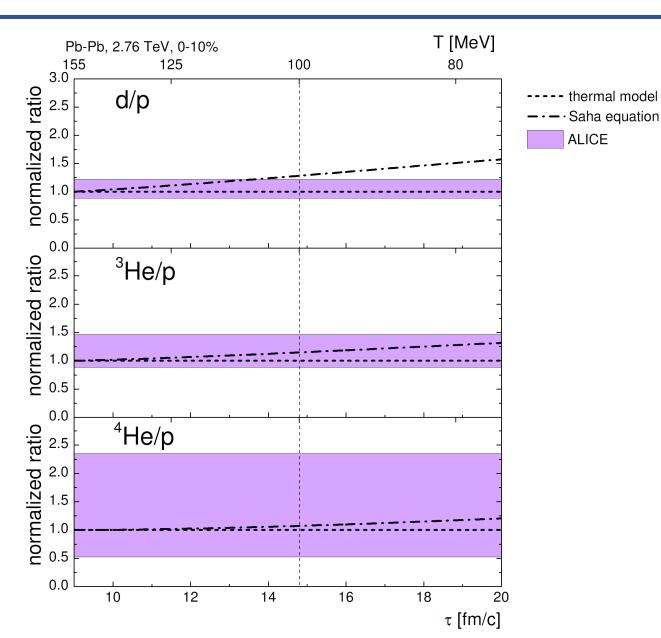


Being implemented in SMASH [D. Oliinychenko]

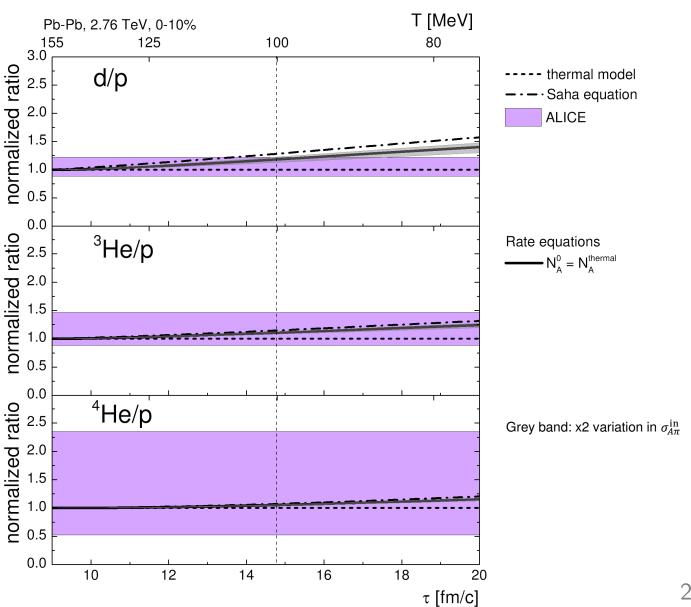
Expansion (both transverse and longitudinal)

$$rac{V}{V_{
m ch}} = rac{ au}{ au_{
m ch}} \, rac{ au_{
m \perp}^2 + au^2}{ au_{
m \perp}^2 + au_{
m ch}^2}, \qquad au_{
m ch} = 9 \,\, {
m fm}, \qquad au_{
m \perp} = 6.5 \,\, {
m fm}$$
[Y. Pan, S. Pratt, PRC 89, 044911 (2014)]

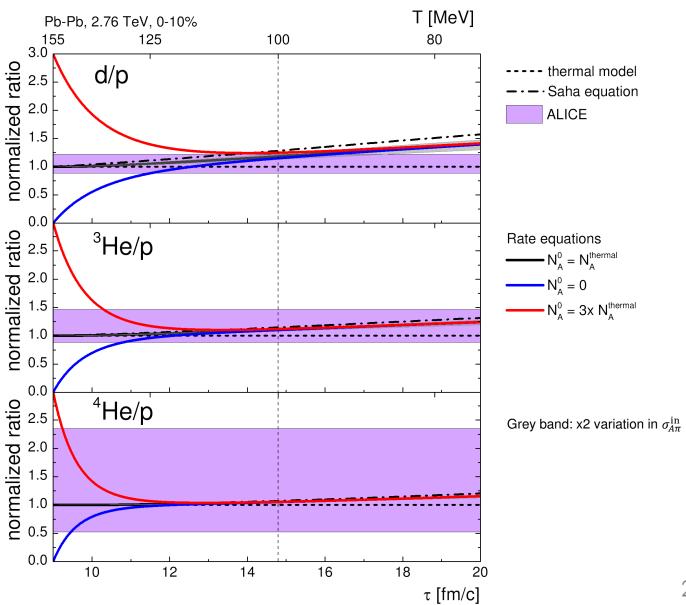
Rate equations at LHC



Rate equations at LHC



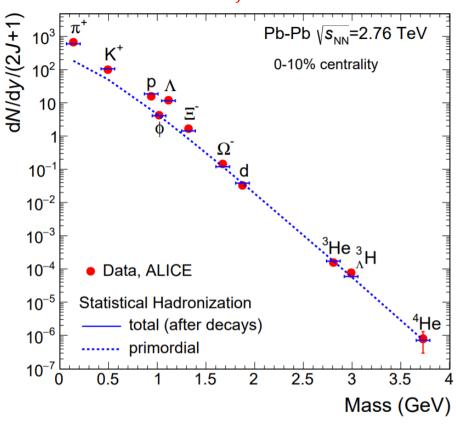
Rate equations at LHC



Feeddown contributions from decays of unstable nuclei

Feeddown in thermal model

Is well-known to be important for hadron yields



[Andronic et al., Nature (2018)]

Production of p

Primordial density = 0.0028648 fm⁻³

Primordial yield = 11.4594

Total yield = 31.4347

Primordial + strong decays = 31.4347

Primordial + strong + EM decays = 31.4347

Primordial + strong + EM + weak decays = 48.5857

Source	Multiplicity	Fraction (%)
Primordial	11.4594	36.4545
Decays from primordial Delta(1232)++	4.86466	15.4755
Decays from primordial Delta(1232)+	3.24327	10.3175
Decays from primordial Delta(1232)0	1.62139	5.15797
Decays from primordial N(1520)0	0.5628	1.79038
Decays from primordial Delta(1600)++	0.540859	1.72058
Decays from primordial N(1520)+	0.436374	1.38819
Decays from primordial N(1440)0	0.412215	1.31134
Decays from primordial Delta(1600)+	0.3931	1.25053
Decays from primordial N(1440)+	0.367071	1.16773
Decays from primordial N(1675)+	0.362324	1.15263
Decays from primordial N(1680)0	0.352206	1.12044

[V.V., Stoecker, CPC (2019)]

T=155 MeV

Feeddown from excited nuclei

4	H	łe
---	---	----

E_{x}	J^{π}	Decay
(MeV)		
g.s.	0_{+}	
20.21	0_{+}	p
21.01	0-	p, n
21.84	2^{-}	p, n
23.33	2^{-}	p, n
23.64	1-	$p, n, (\gamma)$
24.25	1-	p, n, d
25.28	0-	p, n
25.95	1-	p, n, γ
27.42	2^{+}	p, n, d
28.31	1+	p, n, d
28.37	1-	(p, n), d
28.39	2^{-}	(p, n), d
28.64	0-	d
28.67	2^{+}	d, γ
29.89	2^{+}	(p, n), d

 4H

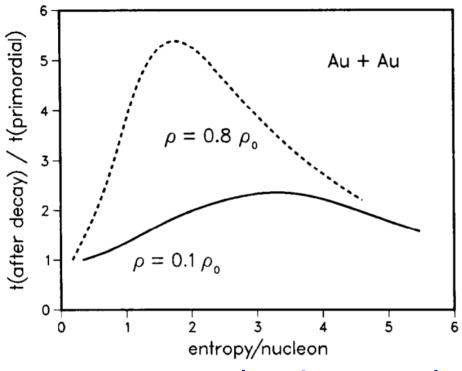
$E_{\rm x}$ (MeV)	J^{π}	Decay
g.s. ^a	2-	n, ³ H
0.31	1-	n, ³ H
2.08	0-	n, ³ H
2.83	1-	n, ³ H

⁴Li

$E_{\rm x}$ (MeV)	J^{π}	Decay
g.s. ^a	2-	p, ³ He
0.32	1-	p, ³ He
2.08	0-	p, ³ He
2.85	1-	р, ³ Не

[Tilley, Weller, Hale, NPA '92]

See also https://www.nndc.bnl.gov/



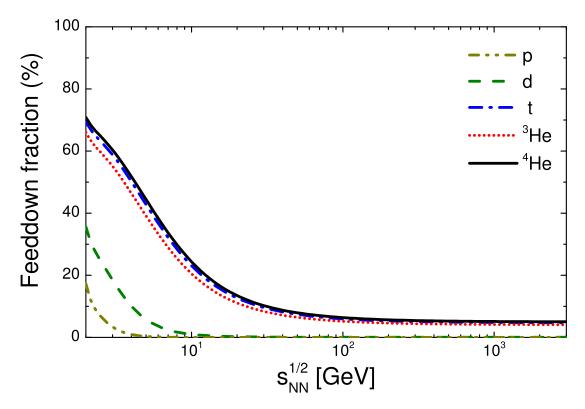
[Hahn, Stöcker, NPA '88]

In what follows feeddown from known A=4 and significant A=5 unstable nuclei included. Nuclei are modeled as point particles.

Relevance of excited ⁴He states also recently pointed out in a baryon preclustering study [Torres-Rincon, Shuryak, 1910.08119]

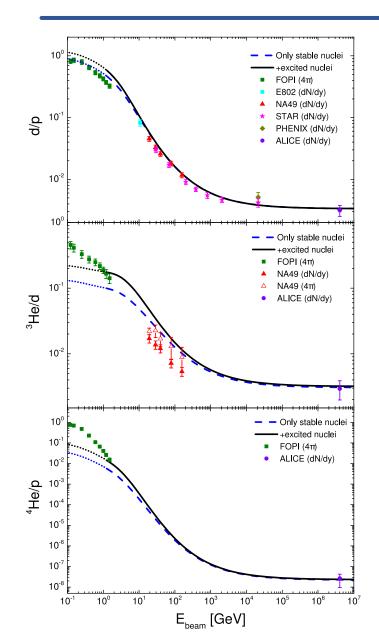
Feeddown from excited nuclei

Feeddown fraction along the phenomenological freeze-out curve



- LHC: 5% effect. Can be measured through p-3He, p-4He correlation?
- RHIC/SPS: 10-40% effect
- **GSI-HADES/FAIR:** Feeddown accounts for more than half of t, ³He, ⁴He

Feeddown from excited nuclei vs data



• NA49 data on ${}^{3}\text{He/d}$ overestimated by both versions of thermal model. Large differences in dN/dy and 4π data (rapidity dependence?)

Low energy FOPI data on ³He/d and ⁴He/d support nuclear feeddown but d/p data do not.

NB: chemical freeze-out curve is an extrapolation in FOPI range

 Preliminary thermal fits to HADES data favor the scenario with feeddown.

[M. Lorenz (HADES) @ EMMI workshop (Wroclaw, 2019)]

More data to come!

Feeddown from excited nuclei: $O_{t,p,d}$

 $O_{\rm t.p.d} = N_t N_p / (N_d)^2$ suggested as a possible probe of critical behavior [K.J. Sun et al., PLB '17, PLB '18; H. Liu et al., PLB '20] coalescence: $O_{p,d,t} = 1/(2\sqrt{3}) \approx 0.29$ thermal/Saha: $O_{p,d,t} = 1/(2\sqrt{3}) \times (1 + Res \rightarrow p)$ +excited nuclei: $O_{p,d,t} = 1/(2\sqrt{3}) \times (1 + Res \rightarrow p)(1 + Res \rightarrow t)/(1 + Res \rightarrow d)^2$ 1.2 1.0 0.8 0.6 coalescence 0.2 NA49 (dN/dy derived) STAR preliminary (dN/dy) 0.0 10^{2} 10¹ $s_{NN}^{1/2}$ [GeV] [NA49: 1606.04234; STAR: 2002.10677]

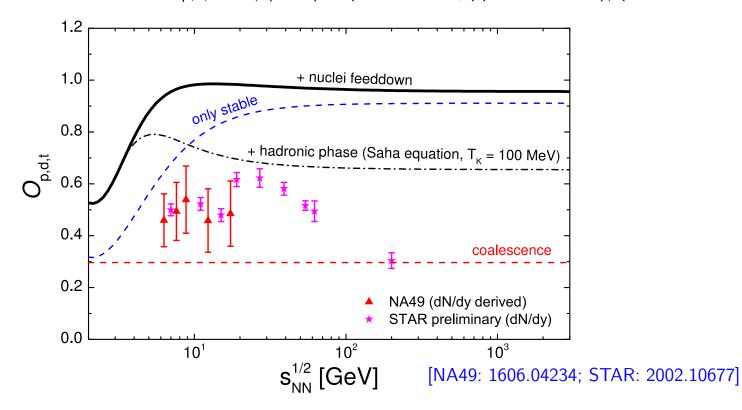
Feeddown from excited nuclei: $O_{t,p,d}$

 $O_{\rm t.p.d} = N_t N_p / (N_d)^2$ suggested as a possible probe of critical behavior [K.J. Sun et al., PLB '17, PLB '18; H. Liu et al., PLB '20] coalescence: $O_{p,d,t} = 1/(2\sqrt{3}) \approx 0.29$ thermal/Saha: $O_{p,d,t} = 1/(2\sqrt{3}) \times (1 + Res \rightarrow p)$ +excited nuclei: $O_{p,d,t} = 1/(2\sqrt{3}) \times (1 + Res \rightarrow p)(1 + Res \rightarrow t)/(1 + Res \rightarrow d)^2$ 1.2 1.0 + nuclei feeddown 0.8 0.6 0.4 coalescence 0.2 NA49 (dN/dy derived) STAR preliminary (dN/dy) 0.0 10^{2} 10¹ $s_{NN}^{1/2}$ [GeV] [NA49: 1606.04234; STAR: 2002.10677]

Feeddown from excited nuclei: $O_{t,p,d}$

 $O_{\rm t,p,d}=N_t\,N_p/(N_d)^2$ suggested as a possible probe of critical behavior [K.J. Sun et al., PLB '17, PLB '18; H. Liu et al., PLB '20] coalescence: $O_{p,d,t}=1/(2\sqrt{3})\approx 0.29$ thermal/Saha: $O_{p,d,t}=1/(2\sqrt{3})\times (1+Res\to p)$

+excited nuclei: $O_{p,d,t} = 1/(2\sqrt{3}) \times (1 + Res \rightarrow p)(1 + Res \rightarrow t)/(1 + Res \rightarrow d)^2$



Possible to obtain a non-monotonic behavior of $O_{t,p,d}$ in an ideal gas picture

Summary and outlook

- Multiplicity dependence of light nuclei abundances at the LHC is consistent with basic canonical suppression considerations (CSM), but no simultaneous description of the p/π ratio is achieved.
- The Saha equation extends the thermal approach down to the kinetic freeze-out, offers possible explanation why the thermal model for point-like nuclei works so well. Kinetic theory (rate equations) agree with the Saha equation, for *all* nuclei up to ⁴He.
- Feeddown from unstable nuclei is sizable for yields of t, ³He, ⁴He at small and intermediate energies.

Summary and outlook

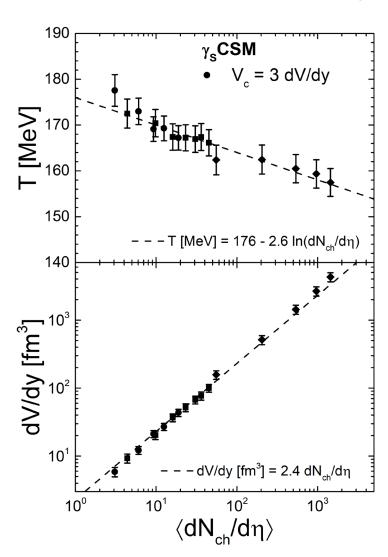
- Multiplicity dependence of light nuclei abundances at the LHC is consistent with basic canonical suppression considerations (CSM), but no simultaneous description of the p/π ratio is achieved.
- The Saha equation extends the thermal approach down to the kinetic freeze-out, offers possible explanation why the thermal model for point-like nuclei works so well. Kinetic theory (rate equations) agree with the Saha equation, for *all* nuclei up to ⁴He.
- Feeddown from unstable nuclei is sizable for yields of t, ³He, ⁴He at small and intermediate energies.

Thanks for your attention!

Backup slides

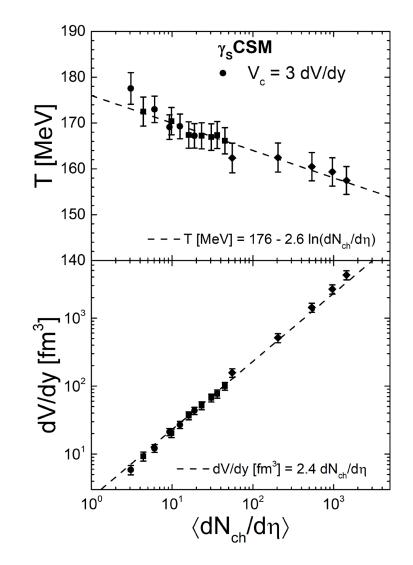
Full CSM

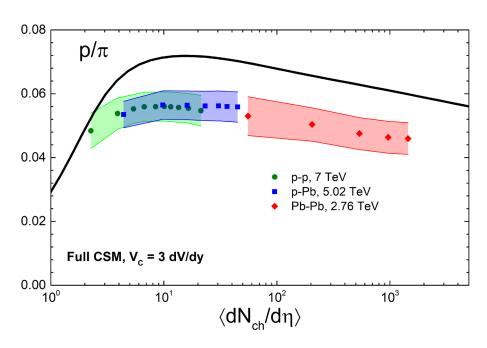
Full CSM: allow for multiplicity-dependent T_{ch} [V.V., Dönigus, Stoecker, 1906.03145, PRC '19]



Full CSM

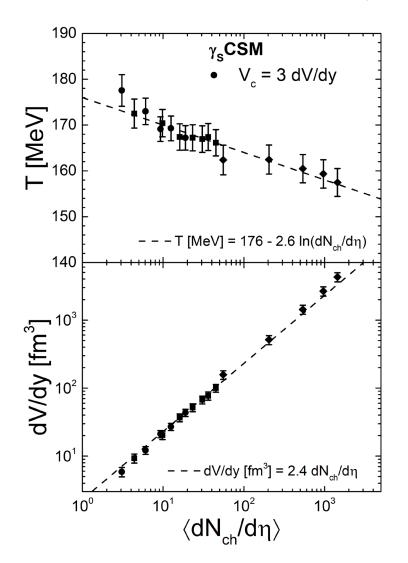
Full CSM: allow for multiplicity-dependent T_{ch} [V.V., Dönigus, Stoecker, 1906.03145, PRC '19]

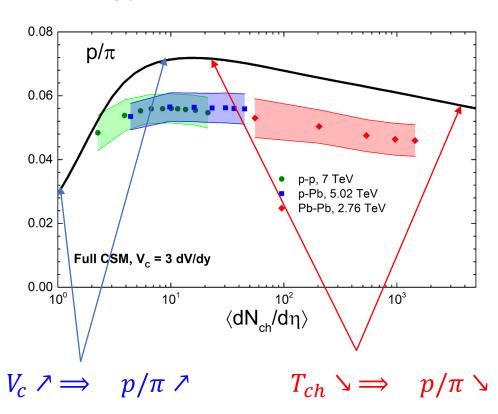




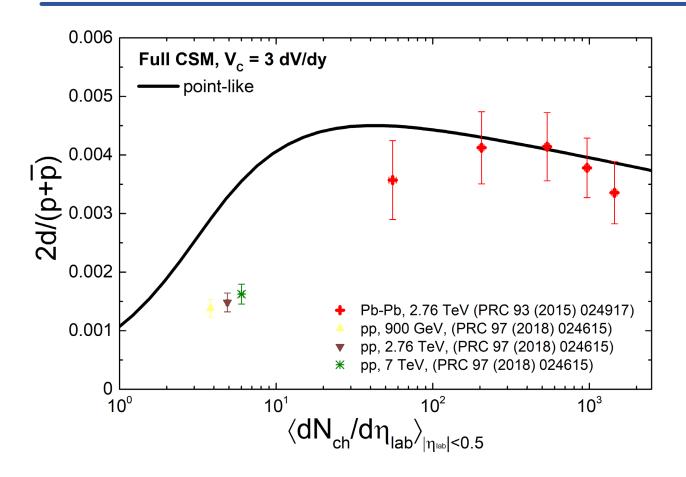
Full CSM

Full CSM: allow for multiplicity-dependent T_{ch} [V.V., Dönigus, Stoecker, 1906.03145, PRC '19]



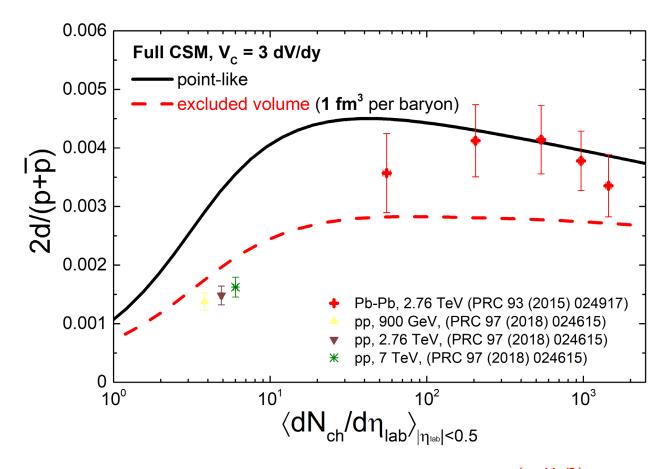


Full CSM: d/p



$$T_{ch} \searrow \implies p/\pi \searrow$$

Full CSM: d/p



$$T_{ch} \searrow \implies p/\pi \searrow$$

Excluded volume (schematic):
$$N_i \rightarrow N_i \exp\left(-\frac{v_i p}{T}\right) \implies d/p > d/p$$

Simultaneous description of light nuclei and p/π ratio remains challenging

Big Bang vs LHC nucleosynthesis

Similarities:

- Inelastic nucleonic reactions freeze-out before nuclei formation
- Isentropic expansion of boson-dominated matter (photons in BBN vs mesons in HIC), baryon-to-boson ratio: $\eta_{BBN} \sim 10^{-10}$, $\eta_{LHC} \sim 0.05$
- Strong nuclear formation and regeneration reactions → Saha equation

Differences:

- Time scales: 1-100 s in BBN vs $\sim 10^{-22}$ s in HIC
- Temperatures: $T_{BBN} < 1$ MeV vs $T_{HIC} \sim 100$ MeV
- Binding energies, proton-neutron mass difference, and neutron lifetime important in BBN, less so in HICs
- $\mu_B \approx 0$ at the LHC, $\mu_B \neq 0$ in BBN
- Resonance feeddown important at LHC, irrelevant in BBN

LHC nucleosynthesis: BBN-like setup

- Chemical equilibrium lost at $T_{ch}=155$ MeV, abundances of nucleons are frozen and acquire effective fugacity factors: $n_i=n_i^{eq}e^{\mu_N/T}$
- Isentropic expansion driven by effectively massless mesonic d.o.f.

$$rac{V}{V_{\mathsf{ch}}} = \left(rac{T_{\mathsf{ch}}}{T}
ight)^3$$
 , $\mu_{\mathcal{N}} \simeq rac{3}{2} \; T \; \mathsf{In} \left(rac{T}{T_{\mathsf{ch}}}
ight) + m_{\mathcal{N}} \; \left(1 - rac{T}{T_{\mathsf{ch}}}
ight)$

• Detailed balance for nuclear reactions, $X + A \leftrightarrow X + \sum_i A_i$, X is e.g. a pion

$$\frac{n_A}{\prod_i n_{A_i}} = \frac{n_A^{\text{eq}}}{\prod_i n_{A_i}^{\text{eq}}}, \Leftrightarrow \mu_A = \sum_i \mu_{A_i}, \quad \text{e.g. } \mu_d = \mu_p + \mu_n, \ \mu_{3\text{He}} = 2\mu_p + \mu_n, \ \dots$$

$$\left\{ X_A = d_A \left[(d_M)^{A-1} \zeta(3)^{A-1} \pi^{\frac{1-A}{2}} 2^{-\frac{3+A}{2}} \right] A^{5/2} \left(\frac{T}{m_N} \right)^{\frac{3}{2}(A-1)} \eta_B^{A-1} \exp \left(\frac{B_A}{T} \right) \right\}$$

 $d_M \sim 11-13$, $\eta_B \simeq 0.03$ fixed at $T_{\rm ch}$

BBN:
$$X_A = d_A \left[\zeta(3)^{A-1} \pi^{\frac{1-A}{2}} 2^{\frac{3A-5}{2}} \right] A^{\frac{5}{2}} \left(\frac{T}{m_N} \right)^{\frac{3}{2}(A-1)} \eta^{A-1} X_p^Z X_n^{A-Z} \exp \left(\frac{B_A}{T} \right)$$

[E. Kolb, M. Turner, "The Early Universe" (1990)]

(BBN-like) Saha equation vs thermal model

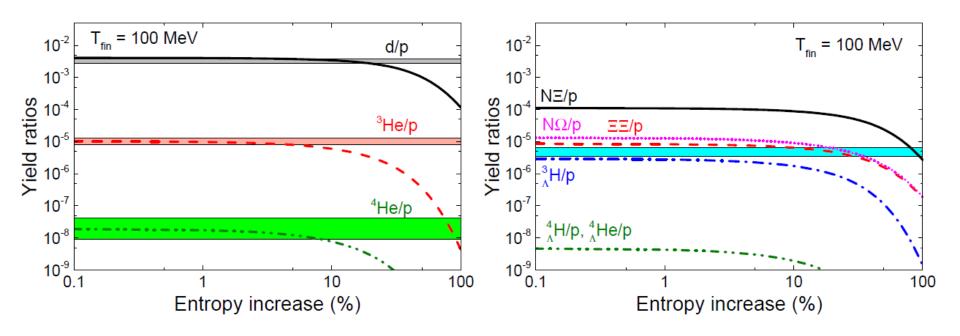
Saha equation:
$$\frac{N_A(T)}{N_A(T_{\rm ch})} \simeq \left(\frac{T}{T_{\rm ch}}\right)^{\frac{3}{2}(A-1)} \exp\left[B_A\left(\frac{1}{T}-\frac{1}{T_{\rm ch}}\right)\right]$$

$$\downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad \downarrow$$

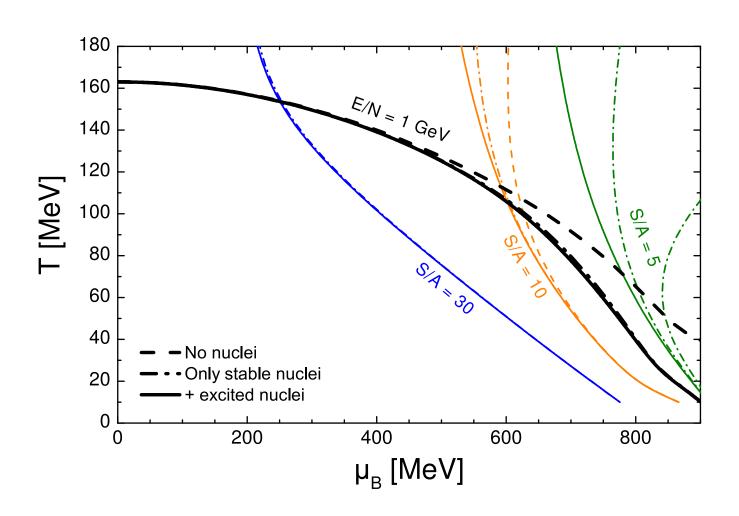
Strong exponential dependence on the temperature is eliminated in the Saha equation approach

Further, quantitative applications require numerical treatment of full spectrum of *massive* mesonic and baryonic resonances

Saha equation: Entropy production effect



Feeddown from nuclei: Isentropes



Feeddown from nuclei: Rapidity dependence

Fireballs at midrapidity: $\mu_B(y_s) \approx \mu_B(0) + b y_s^2$

[Becattini et al., 0709.2599]

