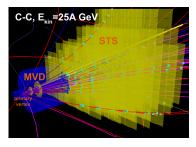
D^{*+} reconstruction in C-C collisions at 25A GeV in the CBM experiment

Volodymyr Vovchenko

Taras Shevchenko National University of Kyiv

September 21, 2011

(日)


D mesons are produced in the early stages of nucleus-nucleus collisions. Multiplicity at FAIR energies ($E_{kin} = 25A \text{ GeV}$) is very low.

Meson	Mass	Multiplicity (by HSD model)	
	[GeV]	C-C	Au-Au
D^0	1.864	$4.1 \cdot 10^{-7}$	2.8 · 10 ^{−5}
\overline{D}^0	1.864	11.6 · 10 ⁻⁷	7.59 · 10 ⁻⁵
D +	1.869	4.26 · 10 ^{−7}	2.91 · 10 ⁻⁵
D-	1.869	9.68 · 10 ⁻⁷	6.17 · 10 ⁻⁵
D*0	2.007	$6.26 \cdot 10^{-7}$	4.59 · 10 ⁻⁵
\overline{D}^{*0}	2.007	$34.9 \cdot 10^{-7}$	22.3 · 10 ⁻⁵
D*+	2.010	7.51 · 10 ⁻⁷	5.56 · 10 ⁻⁵
D*-	2.010	$19.4 \cdot 10^{-7}$	$12.6 \cdot 10^{-5}$

Event reconstruction

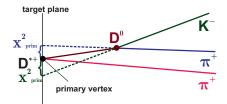
Event simulation and reconstruction with CBMROOT

- Event generator UrQMD plus D*+ source
- Transport code GEANT 3

UrQMD central C-C, 25 A GeV ~ 24 tracks reconstructed with Cellular Automation and Kalman Filter algorithms

Micro Vertex Detector

- Monolithic pixel detectors
- Two vertex stations in vacuum vessel
- Vertex resolution 50 μm


Silicon Tracking System

Silicon microstrip detectors

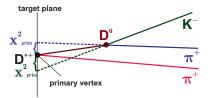
・ロット (雪) (日) (日)

- Eight tracking stations
- Momentum resolution $\Delta p/p \approx 1 \%$

D mesons reconstruction

Decay modes

 D^{*+} and D^{0} are reconstructed via hadronic decays:


$$D^{*+}:$$
 $D^{*+} o D^0 \pi^+$ ($c \tau \sim 10^{-12}$ m, branching ratio 67.7%)

 $D^0:$ $D^0 \rightarrow K^- \pi^+$ ($c\tau = 123 \ \mu m$, branching ratio 3.87%)

Main challenges

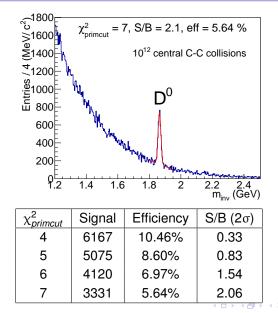
- Low multiplicity
- Low branching ratio
- A lot of background

 D^0 is reconstructed via $K^-\pi^+$ decay. All reconstructed negative tracks are assigned kaon mass, and all positive ones – pion mass, and then combined.

Cuts used to distinguish D^0 signal from background

- $\chi^2_{prim} > \chi^2_{primcut}$ ($\chi^2_{primcut} = 4 7$) and b < 1 mm cuts on daughter tracks impact parameter in the target plane.
- $\chi^2_{geo} <$ 3 cut on distance of minimum approach between daughter tracks.
- $\chi^2_{topo} < 3$ cut on D^0 impact parameter in the target plane.
- z > 350 μm cut on D⁰ decay vertex z-coordinate.

D⁰ invariant mass distribution calculation


Signal calculation algorithm

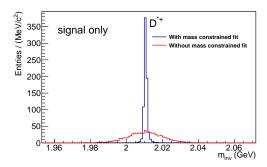
- 10^5 UrQMD events with embedded D^{*+} meson, decaying into D^0 , are simulated and reconstructed.
- D⁰ is reconstructed using all the cuts and Monte Carlo verification to obtain signal.
- Result is renormalized for 10¹² C-C collisions using multiplicities of D mesons.

Background calculation algorithm

- 5000 UrQMD events without D mesons are simulated and reconstructed.
- 2 Tracks, satisfying χ^2_{prim} cut are identified as D^0 daughter candidates.
- They are combined with each other to construct background for effectively 2.5 · 10⁷ events and then renormalized for 10¹² events.

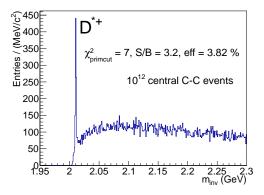
D^0 invariant mass distribution

596


 D^{*+} is reconstructed via decay into D^0 and π^+ .

Algorithm

- 10^5 events with D^{*+} are simulated and reconstructed.
- 2 D^0 daughter tracks are identified using above cuts and constraint $1.84 < M_{D^0}(\text{GeV}) < 1.89$.
- 3 D^0 is combined with all positive tracks which are assigned pion mass and satisfy $\chi^2_{prim} < 3$ cut.
- D^{*+} signal and background is obtained using Monte Carlo verification.
- D^{*+} background is renormalized to include contribution from events without D^{*+} .


Reconstructed D^{*+} mass is corrected:

$$M_{D^{*+}} = \widetilde{M}_{D^{*+}} - M_{D^0}^{rec} + M_{D^0}^{mc}.$$

- Allows to effectively exclude error from D⁰ mass determination.
- Essential to distinguish signal from background!

D^{*+} invariant mass distribution

$\chi^2_{primcut}$	Signal	Efficiency	S/B (2σ)
4	1283	7.11%	1.08
5	1054	5.83%	2.06
6	852	4.71%	2.81
7	692	3.82%	3.19

◆ロ ▶ ◆母 ▶ ◆臣 ▶ ◆臣 ● ○ ○ ○ ○

- Algorithm to detect D*+ signal in central C-C collisions was developed.
- **2** Reconstruction method allows to collect about 3300 D^0 mesons (with signal to background ratio $S/B_{2\sigma} = 2.1$ and efficiency $\epsilon = 5.64\%$) and about 700 D^{*+} mesons ($S/B_{2\sigma} = 3.2$, $\epsilon = 3.82\%$) per 10¹² central C-C events.
- $\chi^2_{primcut}$ values of 6-7 for a cut on D^0 daughter tracks's impact parameter were found to be optimal for D^0 and D^{*+} detection.

(日) (日) (日) (日) (日) (日) (日)

Thanks for your attention!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ