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Strongly interacting matter

Protons and neutrons interact via strong force
Not elementary, composed of quarks, interaction mediated by gluons
Theory: Quantum Chromodynamics (QCD)
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Scales
Length: 1 fm = 10−15 m = 10−5 Å
Energy: 100 MeV = 1010 times room T

Where is it relevant?
Early universe
Neutron stars
Heavy-ion collisions (laboratory!)

First principles of QCD are rather established,
but direct calculations are problematic

Phenomenological tools are very useful
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Thermodynamics

Put a lot of particles in a box and wait...

System will reach state of thermodynamic equilibrium,
characterized by few macroscopic state variables

Equation of State – relation between different state variables

Ideal gas law

P(T ,V ,N) =
N T
V

= n T

Good starting point for applying thermodynamic approach
Simple mathematical properties
With proper input (atoms, molecules, hadrons, ...) can describe well
certain regions of corresponding phase diagram
Cannot be used to describe phase transitions (no liquid-vapor)
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Van der Waals equation
Van der Waals equation

P(T ,V ,N) =
NT

V − bN
− a

N2

V 2

Formulated in 1873.
Nobel Prize in 1910.

Two ingredients:
1) Short-range repulsion: particles are hard spheres,

V → V − bN, b = 4
4πr3

3
2) Attractive interactions in mean-field approximation,
P → P − a n2

Later derived from statistical physics
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Van der Waals equation

VDW isotherms show irregular behavior below certain temperature TC

Interpreted as the appearance of phase transition
Below TC isotherms are corrected by Maxwell’s rule of equal areas
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Van der Waals equation

VDW equation is quite successful in describing qualitative features of
liquid-vapour phase transition in classical substances

But can it provide insight on phase transitions in QCD?
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Statistical ensembles

VDW equation originally formulated in canonical ensemble

Canonical ensemble
System of N particles in fixed volume V exchanges energy with large
reservoir (heat bath)
State variables: T , V , N
Thermodynamic potential – free energy F (T ,V ,N)

All other quantities determined from F (T ,V ,N)

Grand canonical ensemble
System of particles in fixed volume V exchanges both energy and
particles with large reservoir (heat bath)
State variables: T , V , µ
N no longer conserved. Chemical potential µ regulates 〈N〉
Pressure P(T , µ) as function of T and µ contains complete information

GCE is more natural for systems with variable number of particles
GCE formulation opens possibilities for new applications in nuclear physics
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How to transform CE pressure P(T ,n) into GCE pressure P(T , µ)?
Calculate µ(T ,V ,N) from standard TD relations
Invert the relation to get N(T ,V , µ) and put it back into P(T ,V ,N)

Consistency due to thermodynamic equivalence of ensembles

Result: transcendental equation for n(T , µ)

N
V
≡ n(T , µ) =

nid(T , µ∗)

1 + b nid(T , µ∗)
, µ∗ = µ − b

n T
1− b n

+ 2a n

Implicit equation in GCE, in CE it as explicit
May have multiple solutions below TC

Choose one with largest pressure – equivalent to Maxwell rule in CE

Advantages of the GCE formulation
1) Hadronic physics applications: number of hadrons usually not conserved.
2) CE cannot describe particle number fluctuations. N-fluctuations in a
small (V � V0) subsystem follow GCE results.
3) Good starting point to include effects of quantum statistics.
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Scaled variance in VDW equation

New application from GCE formualtion: particle number fluctuations

Scaled variance is an intensive measure of N-fluctuations

σ2

N
= ω[N] ≡ 〈N

2〉 − 〈N〉2

〈N〉
=

T
n

(
∂n
∂µ

)
T

=
T
n

(
∂2P
∂µ2

)
T

In ideal Boltzmann gas fluctuations are Poissonian and ωid [N] = 1.

ω[N] in VDW gas (pure phases)

ω[N] =

[
1

(1− bn)2 −
2an
T

]−1

Repulsive interactions suppress N-fluctuations
Attractive interactions enhance N-fluctuations

N-fluctuations are useful because they
Carry information about finer details of EoS, e.g. phase transitions
Measurable experimentally
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Phase transition signatures

Imagine we are measuring distribution of particle number

Ideal gas
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Measuring average 〈N〉 (or average energy) gives no information about
phase transitions
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Phase transition signatures

What about fluctuations?

Ideal gas
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Deviations from unity signal interaction effects
Fluctuations grow rapidly near critical point

V. Vovchenko et al., J. Phys. A 305001, 48 (2015)
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Skewness

Higher-order (non-gaussian) fluctuations are even more sensitive

Skewness: Sσ =
〈(∆N)3〉
σ2 = ω[N] +

T
ω[N]

(
∂ω[N]

∂µ

)
T
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Positive (right-tailed) in gaseous phase
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Kurtosis

Kurtosis: κσ2 =
〈(∆N)4〉 − 3 〈(∆N)2〉2

σ2 peakedness
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Kurtosis is negative (flat) above critical point (crossover), positive (peaked)
elsewhere and very sensitive to the proximity of the critical point
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VDW equation with quantum statistics

Nucleon-nucleon potential:
Repulsive core at small distances
Attraction at intermediate distances
Suggestive similarity to VDW
interactions
Could nuclear matter described by VDW
equation?

Original VDW equation is for Boltzmann statistics
Nucleons are fermions, obey Pauli exclusion principle
Unlike for classical fluids, uncertainty principle is important

Requirements for VDW equation with quantum statistics

1) Reduce to ideal quantum gas at a = 0 and b = 0
2) Reduce to classical VDW when quantum statistics are negligible
3) s ≥ 0 and s → 0 as T → 0
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VDW equation with quantum statistics in GCE

Ansatz: Take pressure in the following form

p(T , µ) = pid(T , µ∗)− an2, µ∗ = µ− b p − a b n2 + 2an

where pid(T , µ∗) is pressure of ideal quantum gas.

n(T , µ) =

(
∂p
∂µ

)
T

=
nid(T , µ∗)

1 + b nid(T , µ∗)

s(T , µ) =

(
∂p
∂T

)
µ

=
sid(T , µ∗)

1 + b nid(T , µ∗)

ε(T , µ) = Ts + µn − p = [εid(T , µ∗)− an] n

This formulation explicitly satisfies requirements 1-3

Algorithm for GCE

1) Solve system of eqs. for p and n at given (T , µ) (there may be multiple
solutions)
2) Choose the solution with largest pressure
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Nuclear matter as a VDW gas of nucleons

Nuclear matter is known to have a liquid-gas phase transition at
T ≤ 20 MeV and exhibit VDW-like behavior
Usually studied analyzing nuclear fragment distribution
Has long history...

Theory:
Csernai, Kapusta, Phys. Rept. (1986)
Stoecker, Greiner, Phys. Rept. (1986)
Serot, Walecka, Adv. Nucl. Phys. (1986)
Bondorf, Botvina, Ilinov, Mishustin, Sneppen, Phys. Rept. (1995)

Experiment:
Pochodzalla et al., Phys. Rev. Lett. (1995)
Natowitz et al., Phys. Rev. Lett. (2002)
Karnaukhov et al., Phys. Rev. C (2003)

Our description: Nuclear matter as a system of nucleons (d = 4,
m = 938 MeV) described by VDW equation with Fermi statistics. Pions,
resonances and nuclear fragments are neglected

17 / 25



VDW gas of nucleons: zero temperature

How to fix a and b? For classical fluid usually tied to CP location.
Different approach: Reproduce saturation density and binding energy

From EB ∼= −16 MeV and n = n0 ∼= 0.16 fm−3 at T = p = 0 we obtain:

a ∼= 329 MeV fm3 and b ∼= 3.42 fm3 (r ∼= 0.59 fm)
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VDW gas of nucleons: pressure isotherms

CE pressure

p = pid
[
T , µid

( n
1− bn

,T
)]
− a n2
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Behavior qualitatively same as for Boltzmann case
Mixed phase results from Maxwell construction

Critical point at Tc ∼= 19.7 MeV and nc ∼= 0.07 fm−3

Experimental estimate1: Tc = 17.9± 0.4 MeV, nc = 0.06± 0.01 fm−3

1J.B. Elliot, P.T. Lake, L.G. Moretto, L. Phair, Phys. Rev. C 87, 054622 (2013)
19 / 25



VDW gas of nucleons: (T , µ) plane

Density in (T , µ) plane2
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Crossover region at µ < µC
∼= 908 MeV is clearly seen

1V. Vovchenko et al., Phys. Rev. C 91, 064314 (2015) 20 / 25



VDW gas of nucleons: (T , µ) plane

Density in (T , µ) plane2
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Boltzmann: TC = 28.5 MeV. Fermi statistics important at CP
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VDW gas of nucleons: scaled variance

Scaled variance in quantum VDW:

ω[N] = ωid(T , µ∗)

[
1

(1− bn)2 −
2an
T

ωid(T , µ∗)

]−1
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VDW gas of nucleons: skewness and kurtosis

Skewness

Sσ = ω[N] +
T
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V. Vovchenko et al., Phys. Rev. C 92, 054901 (2015)

22 / 25



Pion gas with van der Waals equation
Interacting pion gas as a VDW gas with Bose statistics

VDW parameters: r = 0.3 fm and a/b = 500 MeV

No conserved charges (µ = 0), only temperature dependence
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At some T > T0 there are no solutions!
Van der Waals attraction leads to emergence of limiting temperature
Consequence of GCE and Bose statistics
Suggestive similarity to Hagedorn mass spectrum
Hint of phase transition to new state of matter?

R. Poberezhnyuk et al., arXiv:1508.04585
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VDW interactions in hadron resonance gas

Hadron resonance gas – successful model for low density part of QCD

Usually modeled as non-interacting gas of hadrons and resonances

Add repulsive VDW interactions

Better agreement with lattice
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Big change in fits to exp. data

Eigenvolume interactions had largely been overlooked in past!

V. Vovchenko, H. Stoecker, arXiv:1512.08046
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Summary

1 Classical VDW equation is transformed to GCE and generalized to
include effects of quantum statistics.

2 Scaled variance, skewness, and kurtosis of particle number fluctuations
are calculated for VDW equation. Role of repulsive ans attractive
interactions is clarified.

3 VDW equation with Fermi statistics for nucleons is able to describe
properties of symmetric nuclear matter. VDW equation with Bose
statistics for pions shows limiting temperature. Strong effect of VDW
interactions in HRG

4 Fluctuations are very sensitive to the proximity of the critical point.
Gaseous phase is characterized by positive skewness while liquid phase
corresponds to negative skewness. The crossover region is clearly
characterized by negative kurtosis in VDW model.

Thanks for your attention!
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