Phenomenological developments for event-byevent fluctuations of conserved charges

Volodymyr Vovchenko (LBNL)

CPOD 2021 - International Conference on Critical Point and Onset of Deconfinement

March 16, 2021

- Correcting lattice QCD susceptibilities for global B,Q,S conservation
- Cooper-Frye particlization for event-by-event fluctuations

Acknowledgements:

M.I. Gorenstein, V. Koch, R. Poberezhnyuk, O. Savchuk, J. Steinheimer, H. Stoecker

Unterstützt von / Supported by

Alexander von Humboldt Stiftung/Foundation

QCD phase diagram

- Analytic crossover at vanishing net baryon density a first-principle result from lattice QCD
- Phase structure at finite density is largely unknown
- Probed by heavy-ion collisions, in particular using event-by-event fluctuations

Event-by-event fluctuations and statistical mechanics

Cumulants measure chemical potential derivatives of the (QCD) equation of state

• QCD critical point

M. Stephanov, PRL '09 Energy scans at RHIC (STAR) and CERN-SPS (NA61/SHINE)

• Test of (lattice) QCD at $\mu_B \approx 0$

Figure from Bazavov et al. PRD 95, 054504 (2017) Probed by LHC and top RHIC

Freeze-out from fluctuations

Borsanyi et al. PRL 113, 052301 (2014) Bazavov et al. PRL 109, 192302 (2012)

Theory vs experiment: Caveats

accuracy of the grand-canonical ensemble (global conservation laws)

Jeon, Koch, PRL 85, 2076 (2000); Bzdak, Skokov, Koch, PRC 87, 014901 (2013) Braun-Munzinger, Rustamov, Stachel, NPA 960, 114 (2017)

coordinate vs momentum space (thermal smearing)

Ling, Stephanov, PRC 93, 034915 (2016); Ohnishi, Kitazawa, Asakawa, PRC 94, 044905 (2016)

 proxy observables in experiment (net-proton, net-kaon) vs actual conserved charges in QCD (net-baryon, net-strangeness)

Kitazawa, Asakawa, PRC 85, 021901 (2012); VV, Jiang, Gorenstein, Stoecker, PRC 98, 024910 (2018)

volume fluctuations

Gorenstein, Gazdzicki, PRC 84, 014904 (2011); Skokov, Friman, Redlich, PRC 88, 034911 (2013) Braun-Munzinger, Rustamov, Stachel, NPA 960, 114 (2017)

• non-equilibrium (memory) effects

Mukherjee, Venugopalan, Yin, PRC 92, 034912 (2015)

• hadronic phase

Steinheimer, VV, Aichelin, Bleicher, Stoecker, PLB 776, 32 (2018)

When are the measured fluctuations grand-canonical?

- Consider event-by-event fluctuations of particle number in acceptance ΔY_{accept} around midrapidity
- Scales
 - ΔY_{accept} acceptance
 - ΔY_{total} full space
 - ΔY_{corr} rapidity correlation length (thermal smearing)
 - ΔY_{kick} diffusion in the hadronic phase
- **GCE** applies if $\Delta Y_{total} \gg \Delta Y_{accept} \gg \Delta Y_{kick}, \Delta Y_{corr}$
- In practice $\Delta Y_{total} \gg \Delta Y_{accept}$ nor $\Delta Y_{accept} \gg \Delta Y_{corr}$ are not simultaneously satisfied
 - Corrections from global conservation are large [Bzdak et al., PRC '13]
 - $\Delta Y_{corr} \sim 1 \sim \Delta Y_{accept}$ [Ling, Stephanov, PRC '16]

ALICE event display

V. Koch, arXiv:0810.2520

Baryon number conservation and high-order cumulants

- Early studies using UrQMD model suggested strong suppression of fluctuations [M. Nahrgang et al., EPJC 72, 2143 (2012)]
- Analytical framework for the case of free hadron gas developed in [Bzdak, Skokov, Koch, PRC 87, 014901 (2013)]
- Quantitative applications to heavy-ion data by [Braun-Munzinger, Friman, Redlich, Rustamov, Stachel, NPA 1008, 122141 (2021)]
 - Data-driven rapidity distributions and acceptance fractions

Drawback: the formalism is restricted to free gas (HRG), thus not fully compatible with equilibrium QCD at freeze-out

Baryon number conservation 2.0: SAM

VV, Savchuk, Poberezhnyuk, Gorenstein, Koch, PLB 811, 135868 (2020)

Subensemble acceptance method (SAM) – method to correct *any* EoS (e.g. *lattice QCD*) for charge conservation

Partition a thermal system with a globally conserved charge B (canonical ensemble) into two subsystems which can exchange the charge

Assume thermodynamic limit:

$$V, V_1, V_2 \rightarrow \infty; \quad \frac{V_1}{V} = \alpha = const; \quad \frac{V_2}{V} = (1 - \alpha) = const;$$

 V_1 , $V_2 \gg \xi^3$, $\xi = ext{correlation length}$

The canonical partition function then reads:

$$Z^{ ext{ce}}(T, V, B) = ext{Tr} \ e^{-eta \hat{H}} pprox \sum_{B_1} Z^{ ext{ce}}(T, V_1, B_1) Z^{ ext{ce}}(T, V - V_1, B - B_1)$$

The probability to have charge B_1 is:

$$P(B_1) \propto Z^{ce}(T, \alpha V, B_1) Z^{ce}(T, (1-\alpha)V, B-B_1), \qquad \alpha \equiv V_1/V$$

 $V_1 + V_2 = V$

SAM: Computing the cumulants

VV, Savchuk, Poberezhnyuk, Gorenstein, Koch, PLB 811, 135868 (2020)

Cumulant generating function for B_1 :

$$G_{B_1}(t) \equiv \ln \langle e^{t B_1} \rangle = \ln \left\{ \sum_{B_1} e^{t B_1} \exp \left[-\frac{\alpha V}{T} f(T, \rho_{B_1}) \right] \exp \left[-\frac{\beta V}{T} f(T, \rho_{B_2}) \right] \right\} + \tilde{C} \qquad \beta = 1 - \alpha$$

$$\tilde{\kappa}_1[B_1(t)] = \frac{\sum_{B_1} B_1 \tilde{P}(B_1; t)}{\sum_{B_1} \tilde{P}(B_1; t)} \equiv \langle B_1(t) \rangle \quad \text{with} \quad \tilde{P}(B_1; t) = \exp\left\{tB_1 - V \frac{\alpha f(T, \rho_{B_1}) + \beta f(T, \rho_{B_2})}{T}\right\}$$

Thermodynamic limit: $\tilde{P}(B_1; t)$ highly peaked at $\langle B_1(t) \rangle$

 $\langle B_1(t) \rangle$ is a solution to equation $d\tilde{P}/dB_1 = 0$:

$$t=\hat{\mu}_{B}[extsf{T}$$
 , $ho_{B_{1}}(t)]-\hat{\mu}_{B}[extsf{T}$, $ho_{B_{2}}(t)]$

where $\hat{\mu}_B \equiv \mu_B/T$, $\mu_B(T, \rho_B) = \partial f(T, \rho_B)/\partial \rho_B$

t = 0: $\rho_{B_1} = \rho_{B_2} = B/V$, $B_1 = \alpha B$, i.e. charge uniformly distributed between the subsystems

SAM: Cumulant ratios in terms of GCE susceptibilities

scaled variance $\frac{\kappa_2[B_1]}{\kappa_1[B_1]} = (1 - \alpha) \frac{\chi_2^B}{\chi_1^B},$

 $\chi_n^B \equiv \partial^{n-1} (\rho_B/T^3) / \partial (\mu_B/T)^{n-1}$

*As long as $V_1 \gg \xi^3$ holds

skewness

$$rac{\kappa_3[B_1]}{\kappa_2[B_1]} = (1-2lpha) rac{\chi_3^B}{\chi_2^B}$$

kurtosis

$$\frac{\kappa_4[B_1]}{\kappa_2[B_1]} = (1 - 3\alpha\beta) \frac{\chi_4^B}{\chi_2^B} - 3\alpha\beta \left(\frac{\chi_3^B}{\chi_2^B}\right)^2.$$

- Global conservation (α) and equation of state (χ_n^B) effects factorize in cumulants up to the 3rd order, starting from κ_4 not anymore
- $\alpha \rightarrow 0 \text{GCE limit}^*$
- $\alpha \rightarrow 1 CE$ limit

Full result up to κ_6 in VV, Savchuk, Poberezhnyuk, Gorenstein, Koch, PLB 811, 135868 (2020)

Net baryon fluctuations at LHC ($\mu_B = 0$)

VV, Savchuk, Poberezhnyuk, Gorenstein, Koch, PLB 811, 135868 (2020)

Lattice data for χ_4^B/χ_2^B and χ_6^B/χ_2^B from Borsanyi et al., 1805.04445

Theory: negative χ_6^B/χ_2^B is a possible signal of chiral criticality [Friman, Karsch, Redlich, Skokov, EPJC '11] **Experiment:** $\alpha \approx \frac{N_{ch}(\Delta y)}{N_{ch}(\infty)} \approx \operatorname{erf}\left(\frac{\Delta y}{2\sqrt{2}\sigma_y}\right)$, for $\Delta y \approx 1$ the κ_6/κ_2 is mainly sensitive to the EoS

Planned measurement in Runs 3 & 4 at the LHC [LHC Yellow Report, 1812.06772] $N_{ch}(\Delta y)$ measurement: ALICE Collaboration, PLB 726 (2013) 610-622

SAM for multiple conserved charges (B,Q,S)

Key findings:

• Cumulants up to 3rd order factorize into product of binomial and grand-canonical cumulants

$$\kappa_{l,m,n} = \kappa_{l+m+n}^{\text{bino}}(\alpha) \times \kappa_{l,m,n}^{\text{gce}}, \qquad l+m+n \leq 3$$

- Ratios of second and third order cumulants are NOT sensitive to charge • conservation
- Also true for the measurable ratios of covariances involving one non-• conserved charge, such as κ_{p0}/κ_{k0}
- For order n > 3 charge cumulants "mix". Effect in HRG is tiny

$$\kappa_{4}^{B} = \kappa_{4}^{B,\text{gce}} \beta \left[\left(1 - 3\alpha\beta \right) \chi_{4}^{B} - 3\alpha\beta \frac{(\chi_{3}^{B})^{2}\chi_{2}^{Q} - 2\chi_{21}^{BQ}\chi_{11}^{BQ}\chi_{3}^{B} + (\chi_{21}^{BQ})^{2}\chi_{2}^{B}}{\chi_{2}^{B}\chi_{2}^{Q} - (\chi_{11}^{BQ})^{2}} \right]$$

Experiment: Measurements of the off-diagonal cumulants are in progress, e.g. [STAR Collaboration, arXiv:1903.05370]

VV, Poberezhnyuk, Koch, JHEP 10, 089 (2020)

11

SAM: Applicability and limitations

- Argument is based on partition in *coordinate* space but experiments measure in *momentum* space
 - OK at high energies where we have **Bjorken flow** $[Y \sim \eta_s = \operatorname{atanh}(z/t)]$
 - For small $\Delta Y_{acc} < 1:$ corrections due to thermal smearing and resonance decays
 - Limited applicability at lower energies
- Thermodynamic limit i.e. $V_1, V_2 \gg \xi^3$:
 - OK at LHC where $\frac{dV}{dy} \sim 4000 5000 \text{ fm}^3 \text{ vs. } V_{lattice} \sim 125 \text{ fm}^3$
 - Applicability is more limited near the critical point
- Assumes T, $\mu_B = const$ everywhere

Address these issues with a novel Cooper-Frye particlization routine

VV, Koch, arXiv:2012.09954

Momenta: Cooper-Frye formula

$$\omega_p \frac{dN_h}{d^3p} = \int_{\sigma} d\sigma_\mu p^\mu f[u^\mu p_\mu; T, \mu_j],$$

- 1. Partition the Cooper-Frye particlization hypersurface into subvolumes along the space-time rapidity axis
- 2. Sample each subvolume grand-canonically, using the partition function of an *interacting* HRG
- 3. Reject the event if global conservation is violated
- 4. Sample the momenta of particles
- 5. Do resonance decays or plug into hadronic afterburner

Implementation in the (extended) **Thermal-FIST** package https://github.com/vlvovch/Thermal-FIST

Multiplicities: Partition into subensembles

$$Z^{\text{tot}} = \prod_{i \in \sigma} \sum_{B_i} e^{\mu_i B_i / T} Z^{\text{ce}}(T_i, B_i, V_i) \times \delta(B_{\text{tot}} - \sum_{i \in \sigma} B_i)$$

✓ hydrodynamics

- ✓ locally grand-canonical fluctuations
- \checkmark global conservation
- ✓ thermal smearing
- ✓ resonance decays

A case study: net proton/baryon fluctuations at LHC

Central Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV

- Particlization at T = 160 MeV, $\mu_B = 0$ •
- Rapidity axis partitioned into 96 slices, $\Delta \eta_s = 0.1$, $|\eta_s| < 4.8$ ٠
- Boost-invariant blast-wave hypersurface and flow profile • BW parameters from [Mazeliauskas, Vislavicius, 1907.11059] to match proton pT spectrum
- Sampling of (anti)baryons from the lattice-based EV-HRG • model with global baryon conservation, 10^{10} events

 $P(N) \sim \frac{(V - bN)^{N}}{N!} \ \theta(V - bN)$ Poisson + rejection sampling details in VV, Gorenstein, Stoecker, 1805.01402

EV-HRG model from VV, Pasztor, Fodor, Katz, Stoecker, PLB 775, 71 (2017)]

GCE baseline: $\frac{\kappa_2^B}{\langle B+\bar{B}\rangle} = 0.94$, $\frac{\chi_4^B}{\chi_2^B} = 0.69$, $\frac{\chi_6^B}{\chi_2^B} = -0.18 \leftarrow \text{compatible with lattice}$

Net baryon fluctuations at LHC

• Global baryon conservation distorts the cumulant ratios already for one unit of rapidity acceptance

e.g.
$$\frac{\chi_4^B}{\chi_2^B}\Big|_{T=160MeV}^{\text{GCE}} \simeq 0.67 \neq \frac{\chi_4^B}{\chi_2^B}\Big|_{\Delta Y_{\text{acc}}=1}^{\text{HIC}} \simeq 0.56$$

• Neglecting thermal smearing, effects of global conservation can be described analytically via SAM

$$\frac{\kappa_2}{\langle B + \bar{B} \rangle} = (1 - \alpha) \frac{\kappa_2^{\text{gce}}}{\langle B + \bar{B} \rangle}, \qquad \alpha = \frac{\Delta Y_{\text{acc}}}{9.6}, \quad \beta \equiv 1 - \alpha$$
$$\frac{\kappa_4}{\kappa_2} = (1 - 3\alpha\beta) \frac{\chi_4^B}{\chi_2^B},$$
$$\frac{\kappa_6}{\kappa_2} = [1 - 5\alpha\beta(1 - \alpha\beta)] \frac{\chi_6^B}{\chi_2^B} - 10\alpha(1 - 2\alpha)^2\beta \left(\frac{\chi_4^B}{\chi_2^B}\right)^2$$

• Effect of resonance decays is negligible

VV, Koch, arXiv:2012.09954

Net baryon fluctuations at LHC

 Global baryon conservation distorts the cumulant ratios already for one unit of rapidity acceptance

e.g.
$$\frac{\chi_4^B}{\chi_2^B}\Big|_{T=160MeV}^{\text{GCE}} \simeq 0.67 \neq \frac{\chi_4^B}{\chi_2^B}\Big|_{\Delta Y_{\text{acc}}=1}^{\text{HIC}} \simeq 0.56$$

• Neglecting thermal smearing, effects of global conservation can be described analytically via SAM

$$\frac{\kappa_2}{\langle B + \bar{B} \rangle} = (1 - \alpha) \frac{\kappa_2^{\text{gce}}}{\langle B + \bar{B} \rangle}, \qquad \alpha = \frac{\Delta Y_{\text{acc}}}{9.6}, \quad \beta \equiv 1 - \alpha$$
$$\frac{\kappa_4}{\kappa_2} = (1 - 3\alpha\beta) \frac{\chi_4^B}{\chi_2^B},$$
$$\frac{\kappa_6}{\kappa_2} = [1 - 5\alpha\beta(1 - \alpha\beta)] \frac{\chi_6^B}{\chi_2^B} - 10\alpha(1 - 2\alpha)^2 \beta \left(\frac{\chi_4^B}{\chi_2^B}\right)^2$$

• Effect of resonance decays is negligible

Cumulants corrected for baryon conservation

VV, Koch, arXiv:2012.09954

Net baryon vs net proton

- Thermal smearing distorts the signal at $\Delta Y_{accept} \leq 1$. Net baryons converge to model-independent SAM result at larger ΔY_{accept}
- net baryon \neq net proton, e.g.

$$\frac{\chi_4^B}{\chi_2^B}\Big|_{\Delta Y_{\rm acc}=1}^{\rm HIC} \simeq 0.56 \neq \frac{\chi_4^P}{\chi_2^P}\Big|_{\Delta Y_{\rm acc}=1}^{\rm HIC} \simeq 0.83$$

- Baryon cumulants can be reconstructed from proton cumulants via binomial (un)folding based on isospin randomization [Kitazawa, Asakawa, Phys. Rev. C 85 (2012) 021901]
 - Requires the use of joint factorial moments, only experiment can do it model-independently

VV, Koch, arXiv:2012.09954

Comparison to ALICE data

- Net protons described within errors but not sensitive to the equation of state for the present experimental acceptance
- Large effect from resonance decays for lighter particles
- Future measurements will require larger acceptance

Net proton fluctuations in beam energy scan

- Use Cooper-Frye hypersurface from full (3+1)D numerical hydro solution (MUSIC) at $\sqrt{s_{NN}} = 7.7 200$ GeV constrained to measured dN/dY
- Calculation of net-proton fluctuations in the "standard model" for dynamical description of heavy-ion collisions

STAR data at $\sqrt{s_{NN}} > 20$ GeV consistent with simultaneous effects of global baryon conservation and excluded-volume interactions

More interesting data recently became available [STAR Collaboration, arXiv:2101.12413]

Constraining baryon annihilation with fluctuations

VV, V. Koch, **O. Savchuk**, J. Steinheimer, H. Stoecker, in preparation

Baryon annihilation $B\overline{B} \rightarrow n\pi$ in afterburners (UrQMD, SMASH) suppresses baryon yields

Data on net-proton fluctuations can constrain the effect of annihilations in the hadronic phase

Summary

- Fluctuations are a powerful tool to explore the QCD phase diagram
 - test of lattice QCD and equilibration
 - probe of chiral criticality and QCD critical point
- SAM corrects QCD cumulants in heavy-ion collisions for global conservation of (multiple) charges
 - important link between theory and experiment
- Quantitative analysis of fluctuations at LHC, RHIC, SPS via new particlization routine
 - Need to unfold baryon cumulants from measured protons
 - Data at $\sqrt{s_{NN}} > 20$ GeV consistent with baryon conserv. + excluded volume
 - New way to constrain baryon annihilation

Thanks for your attention!

