Pion condensation in the early
Universe at nonvanishing lepton
flavor asymmetry

Volodymyr Vovchenko (LBNL)

TH Heavy lon Coffee, CERN
October 30, 2020

with B. Brandt, G. Endrodi (Bielefeld U.), F. Cuteri, F. Hajkarim, J. Schaffner-Bielich (Frankfurt U.)
based on 2009.02309

Unterstiitzt von / Supported by s /

~
_ /\ (\5}‘
ceeoroeoe] " P
Alexander von Humboldt

BERKELEY LAB Stiftung/Foundation



https://arxiv.org/abs/2009.02309

Bose-Einstein condensation

1
n(Ep) = ST —1

S.N. Bose, A. Einstein, 1924

n T\%?
BECat T < T, T.~3.31—, — =1—( = for non-rel. Bose gas

Velocity-distribution data for a gas of rubidium atoms confirming the discovery of BEC in 1995
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Pion condensation

The relevant QCD degrees of freedom at low energies are pions

Prt = Ly, = (ny —ng)/2 e

isospin

* chiral perturbation theory ( T=0) [D.T. Son, M. Stephanov, PRL ‘01]
* vacuum at p_+ < mg
* pion BEC at p_+ = m, (2" order phase transition)
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Lattice QCD L chirol crossover | X0 Z
* no sign problem at finite y; 160§
* physical quark masses achieved > I
e consistent with yPT predictions 2 140
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Pion condensation and heavy-ion collisions

Figure from Devetak et al., JHEP 20
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Pion condensation and heavy-ion collisions

Figure from Devetak et al., JHEP 20
* Low-p; enhancement of pions 2 alCE 13030737
: _ P = T TN\ 0-5% i
produced in Pb-Pb collisions at LHC S 0 5.10% x 10’ ]
. . . . (@] 1. E: 10-20% x 10° ]
energies relative to hydro predictions < P 20307 x 10° :
I B 30-40%x 10* -
S .
050 "5 T TE T2 R 3
P, [GeV/c]
. . Fi f B , Florkowski, PRC '14
« Formation of a pion condensate may BT TTom eghn, Tortone
. 7 f>\ 250 [T T T T ]
eXplaIn the data . -O|_ (TC++TC-)/2AL|CE i
. . ) ‘ (o} PbPb @ 2.76 TeV
[Begun, Florkowski, Rybczynski, PRC '14, '15] -OI— 200 o oo A
o AN v 60-80%
< 150k solid: with BEC |
prd dashed: no BEC

* But requires a large non-equilibrium
pion chemical potential, e.g. an off- .
equilibrium hadronization of quark- 3

gluon plasma
[Rafelski, Letessier, et al., EPJA '08, PRC '13]
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The concept for the above figure originated in a 1986 paper by Michael Turner. Particle Data Group, LBNL © 2015 Suppoﬁed by DOE

QCD epoch: ~10 MeV < T < ~100 GeV ~10Ms<t<1s



Cosmic trajectories

conservation equations for isentropic expansion

ng n ng,
B_p 2,
S S S

=1y (ae{epu,7})

trajectory is a line in 6-dim space of temperature and chemical potentials

T7 we, HQ, HL,

empirical constraints (CMB anisotropies)

b = (8.60 4+ 0.06) - 10~ e + 1, + 1] < 0.012

[Planck collab., 1502.01589] [Oldengott, Schwarz, 1706.01705]

equation of state (QCD epoch)

P =~ pQcp + Pleptons + Pphotons



Cosmic trajectories

conservation equations for isentropic expansion

ng n ng,
B_p 2,
S S S

=1y (ae{epu,7})

trajectory is a line in 6-dim space of temperature and chemical potentials

T7 we, HQ, HL,

empirical constraints (CMB anisotropies)

b = (8.60 4+ 0.06) - 10~ e + 1, + 1] < 0.012

[Planck collab., 1502.01589] [Oldengott, Schwarz, 1706.01705]

equation of state (QCD epoch)

P =~ pQcp + Pleptons + Pphotons

Pion condensation may occur if |uQ| >m, at T < 160 MeV
As pointed out in [M. Wygas et al., PRL "18]



Modeling the cosmic equation of state

P =~ pQcp + Pleptons + Pphotons

* leptons

Pieptons( T 4@, fi1,) = Z P(T, pa pe,) + P (T, )] + antiparticles

ac{e,u,7}

e photons



Modeling the cosmic equation of state

P =~ pQcp + Pleptons + Pphotons

* leptons

pleptons( T, HQ, ,LLLQ) - Z [P:S( T, HQ, ,LLLa) + ,D,dea(T, M., )} + antiparticles

ac{e,u,7}
e photons
2
_ T ra

PW(T) T T
+ QCD?
The typical model of choice for hadronic
matter is hadron resonance gas (HRG)

Figure from HotQCD coll., PRD ‘14

Strategy: Implement pion-pion interactions into the HRG model to account
for the pion-condensed phase



Effective mass model for pion condensation

* A quasiparticle picture: pion interactions are driven by effective mass:

P (T, iy m*) = PR(T, s m*) + pr(m”)

rearrangement term

m* (T, uy) from gap equation, gsl’i =0:  pr(m*) =nT, jur; m")

scalar density

more details: [Barz et al., Phys. Rev. D 40 (1989) 157; Savchuk et al., Phys. Rev. C 102 (2020) 035202]



Effective mass model for pion condensation

* A quasiparticle picture: pion interactions are driven by effective mass:

P (T, iy m*) = PR(T, s m*) + pr(m”)

rearrangement term

m* (T, uy) from gap equation, =2 = 0: pr(m*) = (T, pr; m*)

*
om scalar density

* Onset of pion condensation takes place when chemical potential becomes equal to
the effective mass, u, = m*. This gives the Bose-Einstein condensation line:

Teond(fir) : Pr(pn) = N Teond (fin), por; M* = piz]

e T <T.onq: a fraction of pions forms a Bose-Einstein condensate, n, = n;h + nEEC

w = (T s M = i) ne-- = pi(p) = g (T, pimi m* = fir)

thermal pions condensed pions

n

The specific form of the rearrangement term ps(m™) defines the model

more details: [Barz et al., Phys. Rev. D 40 (1989) 157; Savchuk et al., Phys. Rev. C 102 (2020) 035202]



Effective mass model: T =0

No thermal excitations at T = 0, only condensed pions at u,; > m;

nEM(T =0, ur) = P;(NW) ‘9(:“7 - m7r)

fr £ my
T mer(T =0,) = #5511 72 0, — my)
[D.T. Son, M. Stephanov, PRL ‘01]




Effective mass model: T =0

No thermal excitations at T = 0, only condensed pions at u,; > m;

YPT:

nEM(T =0, ur) = P;(NW) ‘9(:“7 - m7r)

14

nXPT( T =0, :UW)

U
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f2[

14

] O(pr — my)

[D.T. Son, M. Stephanov, PRL ‘01]

Match the effective mass model to chiral perturbation theory at T = 0

Lattice data from Brandt, Endrodi, et al., 1802.06685, PRD ‘18

0.4l T=0
4 2 2 2 2\
B pat m;. . 0.2
prnx) == T2 E \
& ;i 0.0
G
\ fw = 133 MeV J -0.2; — Effective mass model (xPT)
-04 Lattice QCD
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Effective mass model: Phase diagram

* Pion condensation boundary

* Qualitatively similar to lattice QCD
* Not as abrupt leveling off as on lattice*

e Model has no deconfinement, thus not
reliable at T > 160 MeV

* Order of the transition

* Kink in n;(u;) at zero temperature
— 2"d order phase transition

* Does not turn 15t order at finite T

* Consistent with lattice QCD observations

*See PQM type models for a more involved modeling of the transition line e.g. [Adhikari, Andersen, Kneschke, 1805.08599]
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HRG model with pion interactions

paco( T g, o) = Y pE"(T ) + > p(T. ).

icnrt 70 J
interacting pions free hadrons and resonances

11



HRG model with pion interactions

paco( T g, o) = Y pE"(T ) + > p(T. ).
ien®,n0 ]

J
interacting pions

free hadrons and resonances

« Al =I1(T,u;) —I(T,0), I=¢e—3p

* Two lattice spacings: N; = 10, N = 12

0.6
T = 130 MeV L T =168 MeV

.04
g
~
~
<1 0.2

0

0 0.5 1 15 9 0 0.5 1 15
pr/my [MeV]

pr/mz [MeV]

* Validity range of the model: [ T <160 MeV,  puy S1.5m; ]

The lattice data and comparison details: VV, Brandt, Cuteri, Endrodi, Hajkarim, Schaffner-Bielich, 2009.02309
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Calculating the cosmic trajectories

Early universe
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Calculating the cosmic trajectories
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Calculating the cosmic trajectories

Early universe Heavy-ion collision

final detected
particle distributions

T ~ 1015 fmtc

Supported by DOE
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Particle Data Group, LBNL © 2015
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S S S

P =~ pqQcp + Pleptons =+ Pphotons P = PQcD

Cosmic trajectories implemented within (extended) Thermal-FIST package gp
[V.V., H. Stoecker, Computer Physics Communications 244, 295 (2019); github link]

Using a heavy-ion tool in cosmology
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Trajectories: Lepton-flavor symmetric case

Fix b = 8.6 - 107! and do a parametric scan in lepton asymmetries

First consider [, =1, =1, =1/3

180 : . ; . ' . 180 T
160 |- | 160 | :
140 [ ] 140 [ -

__ 120} 1 120} i

2 100] ] 2 100f ]

=, g0l 1 2 sl i

= el 1 F el ]

40l A a0l pion-condensed phase
20| E i 20} ]
r | \ L
%00 0 200 400 600 800 O "0 200 300 400
g [MeV) g MeV]

* Pion condensation in the symmetric scenario occurs if |l| > ~0.15

* However, this violates the empirical constraint |I| < 0.012

Outside pion-condensed region reproduces HRG model results of [M. Wygas et al., PRL "18; 2009.00036]
13



Trajectories: Lepton-flavor asymmetric case

180

. * Individual lepton flavor asymmetries

1a0l are much less constrained
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Lepton-flavor asymmetric

case: Cosmic EoS

35[

Full

[ ----QCD only
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The changed EoS has cosmological implications

s(T)[a(T)]?® = const

scale factor

H? =

(é) 2 8rG
— = —— ¢
Hubble rate \ @ 3

Cosmic equation of state
affected strongly by large
lepton asymmetry

Pion condensation leads to
(nearly) negative interaction
measure and c2 > 1/3

At higher temperatures
large I/T* driven by large
lepton chemical potentials

a'  ArnG

a 3

(e —3p)
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Primordial gravitational waves and black holes

Primordial gravitational waves from Fraction of primordial black holes
inflationary scenario relative to cold dark matter
1073 0.001
ls+/,=0.00 le+1,=0.00
lo+1,=0.10
10-13 Jo+1,=0.20 10-4 fe+/,=0.10
le+1,=0.30 1 le+1,=0.20
i =040 - T ‘ : le+1,=0.30
N% 1071 e ———— 7 L E o0® le+1,=0.40
c 1 = ios — w=1/3
10718 1 1078
i 40 1.x10:‘:
7 T 7 o "5 1 2 s
LU 5.x1070 1.x10°2 5.x10 1.x10° 10707 1 10 100 1000
V[HZ] MBH/MQ
* Enhanced relic density of primordial * Changed fraction of primordial
gravitational waves (relative to amplitude black holes heavier than solar mass
at [, +1, =0) _ _ _
* Pion condensation epoch is a
* Possibly reachable by pulsar-timing arrays, source of PBHs?
e.g. Square Kilometer Array (SKA) over _

e.g. LIGO GW190521, .. 16



Production mechanism for pion stars

* Pion stars are gravitationally
bound objects whose main
constituent is the Bose-Einstein

©
condensate of charged pions =

[Carignano et al., 1610.06097; Brandt et al., 1802.06685; E 10
Andersen, Kneschke, 1807.08951]

100

* Pion condensation serves as a
primordial production mechanism 1

104 10°
R [km]
Figure from Brandt et al., 1802.06685

* |f pion stars decay around the time of big bang nucleosynthesis, the
produced high energy leptons can influence the primordially produced nuclei

17



Summary

e The early universe passes through a pion-condensed phase if electron
and muon lepton asymmetry is sufficiently large:

[|le F | > 0.1}

* Implications:
* Large effect on the pre-BBN equation of state

» Enhanced relic density of primordial gravitational waves (relative to amplitude at
le +1,=0)

* Changed fraction of primordial black holes with mass larger than M 5

* Possible formation and decay of pion stars, effect on big bang nucleosynthesis

18



Summary

e The early universe passes through a pion-condensed phase if electron
and muon lepton asymmetry is sufficiently large:

[|le F | > 0.1J

* Implications:
* Large effect on the pre-BBN equation of state

» Enhanced relic density of primordial gravitational waves (relative to amplitude at
le +1,=0)

* Changed fraction of primordial black holes with mass larger than M 5

* Possible formation and decay of pion stars, effect on big bang nucleosynthesis

Thank you!
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HRG model with pion interactions

paco( T g, o) = Y pE"(T ) + > p(T. ).

ien®t w0 J
interacting pions free hadrons and resonances

Al = I(T,u;) —I(T,0), [=¢—3p

(AI — AT®M) /o (A)

0
160
= _5
= 140 =
-
10
120
0 0.5 1 1.5

/-‘I/mﬂ

The lattice data and comparison details: VV, Brandt, Cuteri, Endrodi, Hajkarim, Schaffner-Bielich, 2009.02309
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Lepton chemical potentials

2000 y T T T y T y T y T y T y T T T

1500 F — M,

u | [MeV]

500
| +1 =0.3
e u

0 20 40 60 80 100 120 140 160 180

T [MeV]
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