Pion condensation in the early Universe at nonvanishing lepton flavor asymmetry

Volodymyr Vovchenko (LBNL)

TH Heavy Ion Coffee, CERN

October 30, 2020

with B. Brandt, G. Endrödi (Bielefeld U.), F. Cuteri, F. Hajkarim, J. Schaffner-Bielich (Frankfurt U.) based on 2009.02309

Unterstützt von / Supported by

Alexander von Humboldt Stiftung/Foundation

Bose-Einstein condensation

$$n(E_p) = rac{1}{e^{(E_p - \mu)/T} - 1}$$

S.N. Bose, A. Einstein, 1924

BEC at
$$T < T_c$$
, $T_c \approx 3.31 \frac{n^{2/3}}{m}$, $\frac{n_0}{n} = 1 - \left(\frac{T}{T_c}\right)^{3/2}$ for non-rel. Bose gas

Velocity-distribution data for a gas of rubidium atoms confirming the discovery of BEC in 1995

The relevant QCD degrees of freedom at low energies are pions

$$\mu_{\pi^{\pm}}=\pm\mu_I$$
, $n_I=(n_u-n_d)/2$

- chiral perturbation theory (T=0) [D.T. Son, M. Stephanov, PRL '01]
 - vacuum at $\mu_{\pi^\pm} < m_\pi$
 - pion BEC at $\mu_{\pi^{\pm}} \ge m_{\pi}$ (2nd order phase transition)
- Lattice QCD
 - no sign problem at finite μ_I
 - physical quark masses achieved
 - consistent with χPT predictions

Pion condensation and heavy-ion collisions

 Low-p_T enhancement of pions produced in Pb-Pb collisions at LHC energies relative to hydro predictions

Pion condensation and heavy-ion collisions

 Low-p_T enhancement of pions produced in Pb-Pb collisions at LHC energies relative to hydro predictions

• Formation of a pion condensate may explain the data?

[Begun, Florkowski, Rybczynski, PRC '14, '15]

 But requires a large non-equilibrium pion chemical potential, e.g. an offequilibrium hadronization of quarkgluon plasma

[Rafelski, Letessier, et al., EPJA '08, PRC '13]

Early Universe

QCD epoch: ~10 MeV < T < ~100 GeV $~10^{-11}$ s < t < 1 s

Cosmic trajectories

• conservation equations for isentropic expansion

$$rac{n_B}{s}=b, \quad rac{n_Q}{s}=0, \quad rac{n_{L_{lpha}}}{s}=l_{lpha} \quad (lpha\in\{e,\mu,\tau\})$$

• trajectory is a line in 6-dim space of temperature and chemical potentials

$$T, \mu_B, \mu_Q, \mu_{L_{lpha}}$$

• empirical constraints (CMB anisotropies)

$$b = (8.60 \pm 0.06) \cdot 10^{-11}$$

 $|I_e + I_\mu + I_\tau| < 0.012$ [Planck collab., 1502.01589]

[Oldengott, Schwarz, 1706.01705]

• equation of state (QCD epoch)

$$p pprox p_{ ext{QCD}} + p_{ ext{leptons}} + p_{ ext{photons}}$$

• conservation equations for isentropic expansion

$$\frac{n_B}{s} = b, \quad \frac{n_Q}{s} = 0, \quad \frac{n_{L_{\alpha}}}{s} = l_{\alpha} \quad (\alpha \in \{e, \mu, \tau\})$$

• trajectory is a line in 6-dim space of temperature and chemical potentials

$$T, \mu_B, \mu_Q, \mu_{L_{lpha}}$$

• empirical constraints (CMB anisotropies)

$$b = (8.60 \pm 0.06) \cdot 10^{-11}$$

[Planck collab., 1502.01589]

 $|I_e + I_\mu + I_\tau| < 0.012$

[Oldengott, Schwarz, 1706.01705]

• equation of state (QCD epoch)

$$ppprox p_{ ext{QCD}}+p_{ ext{leptons}}+p_{ ext{photons}}$$

Pion condensation may occur if $\left| \mu_Q \right| > m_\pi$ at T < 160 MeV

As pointed out in [M. Wygas et al., PRL '18]

Modeling the cosmic equation of state

 $p pprox p_{
m QCD} + p_{
m leptons} + p_{
m photons}$

• leptons

$$p_{\mathsf{leptons}}(\mathcal{T}, \mu_{\mathcal{Q}}, \mu_{L_{\alpha}}) = \sum_{\alpha \in \{e, \mu, \tau\}} \left[p_{\alpha}^{\mathsf{id}}(\mathcal{T}, \mu_{\mathcal{Q}}, \mu_{L_{\alpha}}) + p_{\nu_{\alpha}}^{\mathsf{id}}(\mathcal{T}, \mu_{L_{\alpha}}) \right] + \text{ antiparticles}$$

• photons

$$p_{\gamma}(T)=rac{\pi^2}{45} T^4$$

• QCD?

Modeling the cosmic equation of state

 $p pprox p_{
m QCD} + p_{
m leptons} + p_{
m photons}$

leptons

$$p_{ ext{leptons}}(\mathcal{T}, \mu_Q, \mu_{L_lpha}) = \sum_{lpha \in \{e, \mu, au\}} \left[p^{ ext{id}}_{lpha}(\mathcal{T}, \mu_Q, \mu_{L_lpha}) + p^{ ext{id}}_{
u_lpha}(\mathcal{T}, \mu_{L_lpha})
ight] \; + \; ext{antiparticles}$$

photons

$$p_\gamma(T)=rac{\pi^2}{45}~T^4$$

• QCD?

The typical model of choice for hadronic matter is hadron resonance gas (HRG)

Strategy: Implement pion-pion interactions into the HRG model to account for the pion-condensed phase

Effective mass model for pion condensation

• A quasiparticle picture: pion interactions are driven by effective mass:

$$p_{\pi}^{\mathsf{EM}}(T, \mu_{\pi}; m^*) = p_{\pi}^{\mathsf{id}}(T, \mu_{\pi}; m^*) + p_f(m^*)$$

 $m^*(T, \mu_{\pi})$ from gap equation, $\frac{\delta p_{\pi}}{\delta m^*} = 0$: $p'_f(m^*) = n_{\sigma}^{id}(T, \mu_{\pi}; m^*)$

Effective mass model for pion condensation

• A quasiparticle picture: pion interactions are driven by effective mass:

$$p_{\pi}^{\mathsf{EM}}(T, \mu_{\pi}; m^*) = p_{\pi}^{\mathsf{id}}(T, \mu_{\pi}; m^*) + p_f(m^*)$$

 $m^*(T, \mu_{\pi})$ from gap equation, $\frac{\delta p_{\pi}}{\delta m^*} = 0$: $p'_f(m^*) = n_{\sigma}^{id}(T, \mu_{\pi}; m^*)$

• Onset of pion condensation takes place when chemical potential becomes equal to the effective mass, $\mu_{\pi} = m^*$. This gives the Bose-Einstein condensation line:

$$\mathcal{T}_{\mathsf{cond}}(\mu_{\pi}): \qquad p_f'(\mu_{\pi}) = n_\sigma^{\mathsf{id}}[\mathcal{T}_{\mathsf{cond}}(\mu_{\pi}), \mu_{\pi}; m^* = \mu_{\pi}]$$

• $T < T_{cond}$: a fraction of pions forms a Bose-Einstein condensate, $n_{\pi} = n_{\pi}^{th} + n_{\pi}^{BEC}$

$$n_{\pi}^{th} = n^{id}(T, \mu_{\pi}; m^* = \mu_{\pi})$$

 $n_{\pi}^{\mathsf{BEC}} = p'_f(\mu_{\pi}) - n_{\sigma}^{id}(T, \mu_{\pi}; m^* = \mu_{\pi})$
 $thermal \ pions$
 $condensed \ pions$

The specific form of the rearrangement term $p_f(m^*)$ defines the model more details: [Barz et al., Phys. Rev. D 40 (1989) 157; Savchuk et al., Phys. Rev. C 102 (2020) 035202]

Effective mass model: T = 0

No thermal excitations at T=0, only condensed pions at $\mu_\pi>m_\pi$

$$n_\pi^{\mathsf{EM}}(\,T=0,\mu_\pi)=p_f'(\mu_\pi)\, heta(\mu_\pi-m_\pi)$$

$$\chi \text{PT:} \quad n_{\chi \text{PT}}(T = 0, \mu_{\pi}) = \frac{\mu_{\pi} f_{\pi}^2}{2} \left[1 - \frac{m_{\pi}^4}{\mu_{\pi}^4} \right] \theta(\mu_{\pi} - m_{\pi})$$
[D.T. Son, M. Stephanov, PRL '01]

Effective mass model: T = 0

No thermal excitations at T=0, only condensed pions at $\mu_\pi>m_\pi$

$$n_\pi^{\mathsf{EM}}(\,T=0,\mu_\pi)=p_f'(\mu_\pi)\, heta(\mu_\pi-m_\pi)$$

$$\chi \mathsf{PT}: \qquad n_{\chi \mathsf{PT}} (T = 0, \mu_{\pi}) = \frac{\mu_{\pi} f_{\pi}^2}{2} \left[1 - \frac{m_{\pi}^4}{\mu_{\pi}^4} \right] \, \theta(\mu_{\pi} - m_{\pi})$$
[D.T. Son, M. Stephanov, PRL '01

Match the effective mass model to chiral perturbation theory at T = 0:

Lattice data from Brandt, Endrodi, et al., 1802.06685, PRD '18

Effective mass model: Phase diagram

- Pion condensation boundary
 - Qualitatively similar to lattice QCD
 - Not as abrupt leveling off as on lattice*
 - Model has no deconfinement, thus not reliable at T $> 160~\mbox{MeV}$

- Order of the transition
 - Kink in $n_{\pi}(\mu_{\pi})$ at zero temperature $\rightarrow 2^{nd}$ order phase transition
 - Does not turn 1^{st} order at finite T
 - Consistent with lattice QCD observations

*See PQM type models for a more involved modeling of the transition line e.g. [Adhikari, Andersen, Kneschke, 1805.08599] 10

HRG model with pion interactions

 $p_{\text{QCD}}(T, \mu_B, \mu_Q) \approx \sum_{\substack{i \in \pi^{\pm}, \pi^0 \ interacting \ pions}} p_i^{\text{EM}}(T, \mu_i) + \sum_{\substack{j \ free \ hadrons \ and \ resonances}} p_j^{\text{id}}(T, \mu_j).$

HRG model with pion interactions

$$p_{\text{QCD}}(T, \mu_B, \mu_Q) \approx \sum_{\substack{i \in \pi^{\pm}, \pi^0 \\ interacting \ pions}} p_i^{\text{EM}}(T, \mu_i) + \sum_{\substack{j \\ free \ hadrons \ and \ resonances}} p_j^{\text{id}}(T, \mu_j).$$

- $\Delta I = I(T, \mu_I) I(T, 0), \quad I \equiv \varepsilon 3p$
- Two lattice spacings: $N_t = 10$, $N_t = 12$

The lattice data and comparison details: VV, Brandt, Cuteri, Endrodi, Hajkarim, Schaffner-Bielich, 2009.02309

Calculating the cosmic trajectories

Early universe

Calculating the cosmic trajectories

Early universe

Heavy-ion collision

C. Shen, Ohio State U.

$$\frac{n_B}{s}=b, \quad \frac{n_Q}{s}=q, \quad \frac{n_S}{s}=0$$

 $p = p_{QCD}$

Calculating the cosmic trajectories

Early universe

Heavy-ion collision

C. Shen, Ohio State U.

$$\frac{n_B}{s}=b, \quad \frac{n_Q}{s}=q, \quad \frac{n_S}{s}=0$$

 $p = p_{QCD}$

Cosmic trajectories implemented within (extended) **Thermal-FIST** package [V.V., H. Stoecker, *Computer Physics Communications* **244**, *295* (*2019*); github link]

Using a heavy-ion tool in cosmology

Trajectories: Lepton-flavor symmetric case

Fix $b = 8.6 \cdot 10^{-11}$ and do a parametric scan in lepton asymmetries First consider $l_e = l_\mu = l_\tau = l/3$

- Pion condensation in the symmetric scenario occurs if $|l| > \sim 0.15$
- However, this violates the empirical constraint |l| < 0.012

Outside pion-condensed region reproduces HRG model results of [M. Wygas et al., PRL '18; 2009.00036]

Trajectories: Lepton-flavor asymmetric case

- Individual lepton flavor asymmetries are much less constrained
- Set total lepton asymmetry to zero but vary individual flavor ones

 $l_e + l_\mu + l_\tau = 0$ but $l_e \neq l_\mu \neq l_\tau$

• 2D scan in
$$(l_e+l_\mu, l_e-l_\mu)$$

Pion condensation occurs if

$$|\mathit{I_e}+\mathit{I_\mu}|\gtrsim 0.1$$

Lepton-flavor asymmetric case: Cosmic EoS

The changed EoS has cosmological implications

$$s(T)[a(T)]^{3} = \text{const} \qquad \qquad H^{2} = \left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi G}{3} \varepsilon$$
scale factor
$$Hubble \ rate$$

- Cosmic equation of state affected strongly by large lepton asymmetry
- Pion condensation leads to (nearly) negative interaction measure and $c_s^2 > 1/3$
- At higher temperatures large I/T^4 driven by large lepton chemical potentials

$$\frac{a''}{a} = \frac{4\pi G}{3} \left(\varepsilon - 3p\right)$$

Primordial gravitational waves and black holes

Primordial gravitational waves from inflationary scenario

- Enhanced relic density of primordial gravitational waves (relative to amplitude at $l_e + l_\mu = 0$)
- Possibly reachable by pulsar-timing arrays, e.g. Square Kilometer Array (SKA) over 10-20 years of operation

Fraction of primordial black holes relative to cold dark matter

- Changed fraction of primordial black holes heavier than solar mass
- Pion condensation epoch is a source of PBHs?
- Speculation: BHs merger events, e.g. LIGO GW190521, ... 16

Production mechanism for pion stars

 Pion stars are gravitationally bound objects whose main constituent is the Bose-Einstein condensate of charged pions

Carignano et al., 1610.06097; Brandt et al., 1802.06685; Andersen, Kneschke, 1807.08951]

Pion condensation serves as a primordial production mechanism

Figure from Brandt et al., 1802.06685

• If pion stars decay around the time of big bang nucleosynthesis, the produced high energy leptons can influence the primordially produced nuclei

Summary

• The early universe passes through a pion-condensed phase if electron and muon lepton asymmetry is sufficiently large:

$$|l_e+l_\mu|>0.1$$

Implications:

- Large effect on the pre-BBN equation of state
- Enhanced relic density of primordial gravitational waves (relative to amplitude at $l_e+l_\mu=0)$
- Changed fraction of primordial black holes with mass larger than M_{\bigodot}
- Possible formation and decay of pion stars, effect on big bang nucleosynthesis

Summary

• The early universe passes through a pion-condensed phase if electron and muon lepton asymmetry is sufficiently large:

$$|l_e+l_\mu|>0.1$$

• Implications:

- Large effect on the pre-BBN equation of state
- Enhanced relic density of primordial gravitational waves (relative to amplitude at $l_e+l_\mu=0)$
- Changed fraction of primordial black holes with mass larger than M_{\bigodot}
- Possible formation and decay of pion stars, effect on big bang nucleosynthesis

Thank you!

Backup slides

HRG model with pion interactions

The lattice data and comparison details: VV, Brandt, Cuteri, Endrodi, Hajkarim, Schaffner-Bielich, 2009.02309

11

Lepton chemical potentials

