Hadronic resonance production in a partial chemical equilibrium model

Volodymyr Vovchenko (INT Seattle / Berkeley Lab)

ALICE week, CERN

Jun 7, 2022

Based on:

A. Motornenko, VV, C. Greiner, H. Stocker, Phys. Rev. C 102, 024909 (2020)

Probing QCD properties with heavy-ion collisions

Apply concepts of statistical mechanics

Two experimental observations at the LHC

What happens between T_{ch} and T_{kin} ?

Two experimental observations at the LHC

What happens between T_{ch} and T_{kin} ?

Hadronic phase in heavy-ion collisions

- At $T_{ch} \approx 150 160$ MeV inelastic collisions cease, yields of *stable* hadrons frozen
- Kinetic equilibrium maintained down to $T_{kin} \approx 100 120$ MeV through (pseudo)elastic scatterings

Reactions in the hadronic phase*

- Elastic $\pi\pi \leftrightarrow \pi\pi$ and pseudo-elastic resonance reactions $\pi\pi \leftrightarrow \rho$, $\pi K \leftrightarrow K^*, \pi N \leftrightarrow \Delta$, etc.
- Chemical composition of stable hadrons is fixed, e.g. $\pi + 2\rho + 3\omega + \cdots = const$, $K + K^* + \cdots = const$
- Kinetic but not chemical equilibrium enforced \rightarrow fugacity factors $N_i = N_i^{eq} e^{\mu_i/T} = V n_i^{th}(T) e^{\mu_i/T}$
- Kinetic theory based description \rightarrow rate equations for resonance abundances

$$\frac{dN_R}{d\tau} = \sum_{R \to \sum_i a_i} \left\langle \Gamma_{R \to \sum_i a_i} \right\rangle N_R^{\text{eq}} e^{\sum_{i \in a_i} \mu_i / T} - \sum_{R \to \sum_i a_i} \left\langle \Gamma_{R \to \sum_i a_i} \right\rangle N_R^{\text{eq}} e^{\mu_R / T} \quad \text{e.g.} \quad \frac{dN_\rho}{d\tau} = \left\langle \Gamma_\rho \right\rangle N_\rho^{\text{eq}} \left(e^{2\mu_\pi / T} - e^{\mu_\rho / T} \right)$$
gain (regeneration)
loss (decay)

• and entropy production

$$\frac{dS}{d\tau} = -\sum_{i} \frac{dN_{i}}{d\tau} \frac{\mu_{i}}{T}$$

In practice less than 1% entropy generated in the hadronic phase, i.e. expansion essentially isentropic

*For more complete description use Monte Carlo hadronic afterburners like UrQMD/SMASH [Steinheimer et al., PRC95(2017)064902; Oliinychenko, Shen, 2105.07539] 5

Estimate of the reaction rates at the LHC

• Input: transverse and longitudinal expansion [Y. Pan, S. Pratt, PRC 89, 044911 (2014)]

 $(regeneration + decay) \gg |regeneration - decay| \rightarrow partial chemical equilibrium at work:$

→ partial chemical equilibrium at work: $\mu_{\rho} \approx 2\mu_{\pi}, \quad \mu_{K^*} \approx \mu_{\pi} + \mu_{K}, \quad \mu_{\Delta} \approx \mu_N + \mu_{\pi}, \dots$

6

Partial chemical equilibrium (PCE)

Expansion of hadron resonance gas in partial chemical equilibrium at $T < T_{ch}$ [H. Bebie, P. Gerber, J.L. Goity, H. Leutwyler, Nucl. Phys. B '92; C.M. Hung, E. Shuryak, PRC '98]

Chemical composition of stable hadrons is fixed, kinetic equilibrium maintained through pseudo-elastic resonance reactions $\pi\pi \leftrightarrow \rho$, $\pi K \leftrightarrow K^*, \pi N \leftrightarrow \Delta$, etc. E.g.: $\pi + 2\rho + 3\omega + \cdots = const$, $K + K^* + \cdots = const$, $N + \Delta + N^* + \cdots = const$,

Effective chemical potentials:

 $\tilde{\mu}_j = \sum \langle n_i \rangle_j \mu_i, \quad \langle n_i \rangle_j$ – mean number of hadron *i* from decays of hadron *j*, $i \in HRG$ *i*∈stable 900

Conservation laws:

800

700

600

Solid: PCE

Dashed: reaction rates

Resonance suppression in hadronic phase

Yields of resonances are *not* conserved in partial chemical equilibrium

E.g. K^{*} yield dilutes during the cooling through reactions $\pi K \leftrightarrow K^*$ Along the freeze-out curve 0.5 0.30 $\cdot T = T_{ch}$ 0.25 T = T_{kin} = 100 MeV K^{*0}/K^{-} 0.4 Vield ratios 0.15 0.10 Yield Ratios 0.3 $3\rho^{0}/(\pi^{+}+\pi^{-})$ K^{*0}/K[−] 0.2 Λ(1520)/Λ 0.1 0.05 $2\rho^{0}/(\pi^{+}+\pi^{-})$ $2f_{0}(980)/(\pi^{+}+\pi^{-}) \times 5$ 0.00 0.0 80 90 100 120 130 140 150 70 110 10² 10³ 10¹ 10⁴ T [MeV] s^{1/2} [GeV]

Use the sensitivity of short-lived resonance yields to T_{kin} extract the kinetic freeze-out temperature

Kinetic freeze-out temperature from resonances

Thermal fits 2.0: Fit T_{ch} and T_{kin} simultaneously to yields of both stable and short-lived hadrons

Solves the T_{kin} -vs- $\langle \beta_T \rangle$ anticorrelation problem of blast-wave fits

A. Motornenko, VV, C. Greiner, H. Stoecker, Phys. Rev. C 102, 024909 (2020)

Kinetic freeze-out temperature from resonances

PCE: predictions for other (short-)lived resonances

- Some resonances suppressed notably, others barely change, none are significantly enhanced
- $\Delta(\tau = 1.7 \ fm/c)$ and $\Sigma^*(\tau = 5.5 \ fm/c)$ do not change notably
 - Similar to transport but may be in tension with data where K^{*0} -like suppression indicated [ALICE Coll., 2205.13998]
- $f_0 \leftrightarrow \pi\pi$ is in equilibrium (PCE) or not depending on its $\tau = 2-20$ fm/c lifetime
 - A notable suppression in the hadronic phase predicted by PCE would indicate a short lifetime
- Transport models yield generally similar results for most resonances

Knospe et al., PRC 93 (2016) 014911 Oliinychenko, Shen, 2105.07539 Blast-wave event generator utilizing PCE hadron abundances at $T=T_{\rm kin}=T_{\rm BW}$

Can include effects of quantum statistics, resonance widths, (grand-)canonical treatment of conserved charged on p_T -differential observables

Available in Thermal-FIST since version 1.3!

PCE and light (anti-)(hyper-)nuclei: Saha equation

VV, Gallmeister, Schaffner-Bielich, Greiner, PLB 800, 135131 (2020) Detailed balance for nuclear reactions $\frac{n_A}{\prod_i n_{A_i}} = \frac{n_A^{\text{eq}}}{\prod_i n_{A_i}^{\text{eq}}}, \quad \Leftrightarrow \quad \mu_A = \sum_i \mu_{A_i}, \quad \text{e.g. } \mu_d = \mu_p + \mu_n, \quad \mu_{3\text{He}} = 2\mu_p + \mu_n, \quad \dots$ 10⁻² 10⁻² d/p **10**⁻³ 10⁻³ NΞ/p Xield ratios 10⁻⁶ Yield ratios 10⁻⁴ ³He/p ΞΞ/p $N\Omega/p$ **10**⁻⁵ **10**⁻⁶ ³_AH/p (a) 10⁻⁷ ⁴He/p 10⁻⁷ (b) $^{4}_{\Lambda}$ H/p, $^{4}_{\Lambda}$ He/p **10⁻⁸** 10⁻⁸ Tkir 10⁻⁹ 10⁻⁹ 130 80 90 110 120 70 100 140 150 80 90 120 130 140 70 100 110 150 T [MeV] T [MeV]

Data permit freeze-out of light (anti-)(hyper-)nuclei at any T<T_{ch} in the hadronic phase! Echoes transport model conclusions for d [D. Oliinychenko, et al., PRC 99, 044907 (2019)]

13

Hadronic phase with annihilations

0

1.8

1.6

1.4

.2

1.0

0.8

0.6

π

Data/Model

Add nucleon annihilations $N\overline{N} \leftrightarrow 5\pi$ into the PCE framework

(Anti)nucleon and pions numbers no longer conserved, N_N , $N_{\bar{N}}$, $N_{\pi} \neq \text{const.}$ but $\frac{N_N + N_{\bar{N}}}{2} + \frac{N_{\pi}}{5} = \text{const.}$

Λ

Ω

Ξ

Including annihilations in the hadronic phase leads to a much nicer fit NB: hyperon annihilations not allowed here

ø

р

 K_0^S

Κ

Summary

- **Partial chemical equilibrium** is a thermodynamical approach for resonance abundances in the hadronic phase
 - Short-lived resonances are generally suppressed, stable hadrons unaffected
- Thermal fits 2.0: Fit T_{ch} and T_{kin} simultaneously to yields of both stable and short-lived hadrons
 - extract kinetic freeze-out temperature from yields
 - ρ^0 and K^{*0} are particularly sensitive
 - solves the T_{kin} -vs- $\langle \beta_T \rangle$ anticorrelation problem of blast-wave fits
- Implementation: Thermal-FIST v1.3+
 - Calculations of abundances and thermodynamic properties
 - Thermal fits 2.0
 - Event generator
 - Saha equation

Thanks for your attention!

