Fluctuation Probes of QCD Matter in Heavy-Ion Collisions

Volodymyr Vovchenko (University of Houston)

Hadron Ion Tea (HIT) Seminar, LBNL

March 11, 2025

Thanks to:

A. Bzdak, V. Koch, V.A. Kuznietsov, R. Poberezhniuk, J. Parra, C. Ratti

QCD under extreme conditions

- Dilute hadron gas at low T & $\mu_{
 m B}$ due to confinement, quark-gluon plasma high T & $\mu_{
 m B}$
- Nuclear liquid-gas transition in cold and dense matter, lots of other phases conjectured
- Chiral crossover at $\mu_B = 0$ which may turn into a *first-order phase transition* at finite μ_B

Key question: Is there a QCD critical point and how to find it?

- H. Shah, M. Hippert, J. Noronha, C. Ratti, VV, "Locating the QCD critical point from first principles through contours of constant entropy density", <u>arXiv:2410.16206</u>
- S. Borsanyi, Z. Fodor, J. Guenther, P. Parotto, A. Pasztor, C. Ratti, VV, C.-H. Wong, "Lattice QCD constraints on the critical point from an improved precision equation of state", <u>arXiv:2502.10267</u>

Critical point and crossings of entropy density

- Entropy density s becomes multi-valued function of T and μ_B for a first-order phase transition
- It develops a distinctive S-shape as a function of T at $\mu_B = const$

Critical Point:

$$\left(\frac{\partial T}{\partial s}\right)_{\mu_B} = 0, \qquad \left(\frac{\partial^2 T}{\partial s^2}\right)_{\mu_B} = 0.$$

H. Shah, M. Hippert, J. Noronha, C. Ratti, VV, arXiv:2410.16026

- Lattice QCD simulations at imaginary chemical potentials indicate that entropy contours are almost linear in μ_B^2

Idea: Follow contours of constant entropy density and look for crossings

$$T_s(\mu_B; T_0) \approx T_0 + \sum_{n=1}^N \alpha_{2n}(T_0) \frac{\mu_B^{2n}}{(2n)!} + \mathcal{O}\left(\mu_B^{2(N+1)}\right) \qquad \alpha_{2n}(T_0) = \left(\frac{\partial^{2n}T}{\partial\mu_B^{2n}}\right)_s \Big|_{T=T_0, \mu_B=0}$$

Entropy density at finite μ_B at $O(\mu_B^2)$

• Excellent agreement at low μ_B/T with available lattice QCD constraints

[Borsanyi et al., PRL 126, 232001 (2021)] First-order phase transition emerges at $\mu_B > 600$ MeV

Locating the critical point

Critical point location at $O(\mu_B^2)$: $T_c = 114.3 \pm 6.9$ MeV, $\mu_B = 602.1 \pm 62.1$ MeV

Locating the critical point

Critical point location at $O(\mu_B^2)$: $T_c = 114.3 \pm 6.9$ MeV, $\mu_B = 602.1 \pm 62.1$ MeV

Similar to estimates from recent literature:

YLE-1: D.A. Clarke et al. (Bielefeld-Parma), arXiv:2405.10196
YLE-2: G. Basar, PRC 110, 015203 (2024)
BHE: M. Hippert et al., arXiv:2309.00579
fRG: W-J. Fu et al., PRD 101, 054032 (2020)
DSE/fRG: Gao, Pawlowski., PLB 820, 136584 (2021)
DSE: P.J. Gunkel et al., PRD 104, 052022 (2021)
FSS: A. Sorensen et al., arXiv:2405.10278
FSS-2: R. Lacey, arXiv:2411.09139

Recent development: Extrapolations of s = const contours from imaginary μ_B with strangeness neutrality

 \hookrightarrow CP excluded at $\mu_B < 450$ MeV at a (one-sided) 2σ level

S. Borsanyi, Z. Fodor, J. Guenther, P. Parotto, A. Pasztor, C. Ratti, VV, C.-H. Wong, arXiv:2502.10267

Critical point and heavy-ion collisions

Control parameters

- Collision energy $\sqrt{s_{NN}} = 2.4 5020 \text{ GeV}$
 - Scan the QCD phase diagram
- Size of the collision region
 - Expect stronger signal in larger systems

Measurements

 Final hadron abundances and momentum distributions event-by-event

Chemical freeze-out curve and CP

- Sets the lower bound on the temperature of the CP [Lysenko, Poberezhnyuk, Gorenstein, VV, arXiv:2408.06473]
- **Caveats:** strangeness neutrality ($\mu_S \neq 0$), uncertainty in the freeze-out curve
- CP may be close to freeze-out at $\sqrt{s_{NN}}\sim 3.5-5~{\rm GeV}$

Critical point, cumulants, and heavyion collisions

Cumulants measure chemical potential derivatives of the (QCD) equation of state

• (QCD) critical point: large correlation length and fluctuations

M. Stephanov, PRL '09, '11 Energy scans at RHIC (STAR) and CERN-SPS (NA61/SHINE)

$$\kappa_2 \sim \xi^2$$
, $\kappa_3 \sim \xi^{4.5}$, $\kappa_4 \sim \xi^7$

 $\xi o \infty$

Looking for enhanced fluctuations and non-monotonicities

Other uses of cumulants:

- QCD degrees of freedom Jeon, Koch, PRL 85, 2076 (2000) Asakawa, Heinz, Muller, PRL 85, 2072 (2000)
- Extracting the speed of sound A. Sorensen et al., PRL 127, 042303 (2021)
- Conservation volume V_C VV, Donigus, Stoecker, PRC 100, 054906 (2019)

Example: (Nuclear) Liquid-gas transition

VV, Anchishkin, Gorenstein, Poberezhnyuk, PRC 92, 054901 (2015)

Critical opalescence

 $\langle N^2 \rangle - \langle N \rangle^2 \sim \langle N \rangle \sim 10^{23}$ in equilibrium

Example: Critical fluctuations in a microscopic simulation

V. Kuznietsov et al., Phys. Rev. C 105, 044903 (2022)

0.50

α

0.75

1.0

g.c.e.

N = 400

Classical molecular dynamics simulations of the Lennard-Jones fluid near Z(2) critical point ($T \approx 1.06T_c$, $n \approx n_c$) of the liquid-gas transition

Scaled variance in coordinate space acceptance $|z| < z^{max}$

- Large fluctuations survive despite strong finite-size effects
- Need coordinate space cuts (collective flow helps)
- Here no finite-time effects

Collective flow and finite-time effects explored in V. Kuznietsov et al., Phys. Rev. C 110, 015206 (2024)

Heavy-ion collisions: flow correlates p_z and z cuts z (or η_s)

Non-Gaussian fluctuations from molecular dynamics

Non-Gaussian fluctuations from molecular dynamics

• (Non-)Gaussian cumulants equilibrate on comparable time scales

see also X. An et al., PRL 127, 072301 (2021); C. Chattopadhyay et al., PRL 133, 032301 (2024)

Theory vs experiment: Challenges for fluctuations

Theory

 $\ensuremath{\mathbb{C}}$ Lattice QCD@BNL

- Coordinate space
- In contact with the heat bath
- Conserved charges
- Uniform
- Fixed volume

Experiment

STAR event display

- Momentum space
- Expanding in vacuum
- Non-conserved particle numbers
- Inhomogeneous
- Fluctuating volume

Need dynamical description

Proton cumulants from RHIC-BES-II

Hydro EV: VV, V. Koch, C. Shen, Phys. Rev. C 105, 014904 (2022)

What is hydro EV?

Hydro EV: Non-critical hydro baseline at RHIC-BES

Au-Au, 0-5%

VV, V. Koch, C. Shen, Phys. Rev. C 105, 014904 (2022)

MUSIC + SAM

- (3+1)-D viscous hydrodynamics evolution (MUSIC-3.0)
 - Collision geometry-based 3D initial state [Shen, Alzhrani, PRC 102, 014909 (2020)]
 - Crossover equation of state based on lattice QCD

[Monnai, Schenke, Shen, Phys. Rev. C 100, 024907 (2019)]

- Non-critical contributions computed at particlization ($\epsilon_{sw} = 0.26 \text{ GeV/fm}^{3}$)
 - QCD-like baryon number distribution (χ_n^B) via **excluded volume** b = 1 fm³ [VV, V. Koch, Phys. Rev. C 103, 044903 (2021)]
 - **Exact global baryon conservation*** (and other charges)
 - Subensemble acceptance method 2.0 (analytic) [VV, Phys. Rev. C 105, 014903 (2022)]
 - or FIST sampler (Monte Carlo) [VV, Phys. Rev. C 106, 064906 (2022)] https://github.com/vlvovch/fist-sampler
- Included: baryon conservation, repulsion, kinematical cuts
- Absent: critical point, local conservation, initial-state/volume fluctuations, hadronic phase

*If baryon conservation is the only effect (no other correlations), non-critical baseline can be computed without hydro Braun-Munzinger, Friman, Redlich, Rustamov, Stachel, NPA 1008, 122141 (2021)

RHIC-BES-II (Factorial) cumulants A. Pandav, CPOD2024

Factorial Cumulant Ratios

 $(1)\frac{\kappa_2}{\kappa_1}$ -0.1 BES-II 🖉 BES-I Hydro Hydro EV -0.20-5% Au+Au Collisions (2) (anti-) proton, lyl < 0.5 $0.4 < p_{_{T}} < 2.0 \; GeV/c$ 0.05 $0.5 - (3) \frac{\kappa_4}{\kappa_4}$ 0.25 -0.25 20 200 10 100 Collision Energy $\sqrt{s_{NN}}$ (GeV)

Proton/antiproton

factorial cumulant ratios

More structure seen in factorial cumulants

Conclusion 1:

Ordinary cumulants

Factorial cumulants

What are the factorial cumulants?

Factorial cumulants \hat{C}_n vs ordinary cumulants C_n

Factorial cumulants: ~irreducible n-particle correlations

$$\begin{split} \hat{C}_n &\sim \langle N(N-1)(N-2) \dots \rangle_c & C_n \sim \langle \delta N^n \rangle_c \\ \hat{C}_1 &= C_1 & C_1 = \hat{C}_1 \\ \hat{C}_2 &= C_2 - C_1 & C_2 = \hat{C}_2 + \hat{C}_1 \\ \hat{C}_3 &= C_3 - 3C_2 + 2C_1 & C_3 = \hat{C}_3 + 3\hat{C}_2 + \hat{C}_1 \\ \hat{C}_4 &= C_4 - 6C_3 + 11C_2 - 6C_1 & C_4 = \hat{C}_4 + 6\hat{C}_3 + 7\hat{C}_2 + \hat{C}_1 \end{split}$$

Ordinary cumulants: mix correls. of different orders

[Bzdak, Koch, Strodthoff, PRC 95, 054906 (2017); Kitazawa, Luo, PRC 96, 024910 (2017); C. Pruneau, PRC 100, 034905 (2019)]

Factorial cumulants and different effects

- Baryon conservation [Bzdak, Koch, Skokov, EPJC '17]
- Excluded volume [VV et al, PLB '17]
- Volume fluctuations [Holzman et al., arXiv:2403.03598]
- Critical point [Ling, Stephanov, PRC '16]
- $\hat{C}_n^{\mathrm{cons}} \propto (\hat{C}_1)^n / \langle N_{\mathrm{tot}} \rangle^{n-1}$ small $\hat{C}_n^{\sf EV} \propto b^n$ small
- proton vs baryon $\hat{C}_n^B \sim 2^n \times \hat{C}_n^p$ same sign! [Kitazawa, Asakawa, PRC '12]

 $+\hat{C}_{1}$

- $\hat{C}_{n}^{CF} \sim (\hat{C}_{1})^{n} \kappa_{n}[V]$ depends on volume cumulants
- $\hat{C}_2^{CP} \sim \xi^2$, $\hat{C}_3^{CP} \sim \xi^{4.5}$, $\hat{C}_4^{CP} \sim \xi^7$ large

Factorial cumulants from RHIC-BES-II

From M. Stephanov, SQM2024 & arXiv:2410.02861

 μ_B

 $\omega_n = \hat{C}_n / \hat{C}_1$

Bzdak et al review 1906.00936

Expected signatures: bump in ω_2 and ω_3 , dip then bump in ω_4 for CP at $\mu_B > 420$ MeV

0

Factorial cumulants from RHIC-BES-II

From M. Stephanov, SQM2024 & arXiv:2410.02861

baseline (hydro EV):

VV, V. Koch, C. Shen, PRC 105, 014904 (2022)

Bzdak et al review 1906.00936

Expected signatures: bump in ω_2 and ω_3 , dip then bump in ω_4 for CP at $\mu_B > 420$ MeV

Factorial cumulants from RHIC-BES-II

From M. Stephanov, SQM2024 & arXiv:2410.02861

baseline (hydro EV):

VV, V. Koch, C. Shen, PRC 105, 014904 (2022)

- describes right side of the peak in \hat{C}_3 •
- signal relative to baseline:
 - positive $\hat{C}_2 \hat{C}_2^{baseline} > 0$
 - negative $\hat{C}_3 \hat{C}_3^{baseline} < 0$

Conclusion 2:

Controlling the non-critical baseline is essential

Bzdak et al review 1906.00936

Expected signatures: bump in ω_2 and ω_3 , dip then bump in ω_4 for CP at $\mu_B > 420$ MeV

Factorial cumulants from RHIC-BES-II and CP

Equilibrium expectation

Exclusion plots

Exclude $\hat{\mathcal{C}}_2{<}0$ & $\hat{\mathcal{C}}_3{>}0$ regions on the phase diagram near CP

Adapted from Bzdak, Koch, Strodthoff, PRC 95, 054906 (2017) and based on the model from VV, Anchishkin, Gorenstein, Poberezhnyuk, PRC 92, 054901 (2015)

Freeze-out of fluctuations on the QGP side of the crossover?

Factorial cumulants from RHIC-BES-II and CP

Exclusion plots

Exclude $\hat{C}_2 < 0$ & $\hat{C}_3 > 0$ regions on the phase diagram near CP

 μ_B

Adapted from Bzdak, Koch, Strodthoff, PRC 95, 054906 (2017) and based on the model from VV, Anchishkin, Gorenstein, Poberezhnyuk, PRC 92, 054901 (2015)

Mukherjee, Venugopalan, Yin, PRC 92, 034912 (2015)

Freeze-out of fluctuations on the QGP side of the crossover?

Interplay with nuclear liquid-gas transition

VV, Gorenstein, Stoecker, Phys. Rev. Lett. 118, 182301 (2017)

Interplay with nuclear liquid-gas transition

VV, Gorenstein, Stoecker, Phys. Rev. Lett. 118, 182301 (2017)

Increasingly relevant at lower energies probed through RHIC-FXT

Scaled factorial cumulants, long-range correlations, and the antiproton puzzle A. Bzdak, V. Koch, VV, in preparation

Scaled factorial cumulants

Bzdak et al. introduced reduced correlation functions – "couplings" [Bzdak, Koch, Strodthoff, PRC 95, 054906 (2017)]

Bzdak ratios

 $\hat{c}_k = \frac{\sigma_k}{\langle N \rangle^k}$

$$c_k = \frac{\int \rho_1(y_1) \cdots \rho_1(y_k) c_k(y_1, \dots, y_k) dy_1 \cdots dy_k}{\int \rho_1(y_1) \cdots \rho_1(y_k) dy_1 \cdots dy_k}$$

integrated correlation function in rapidity

Long-range correlations lead to acceptance-independent couplings, for example

- Global (not local) baryon conservation
 [Bzdak, Koch, Skokov, EPJC 77, 288 (2017); Bzdak, Koch, PRC 96, 054905 (2017)]
- + volume fluctuations

[Holzmann, Koch, Rustamov, Stroth, arXiv:2403.03598]

$$c_2 = -\frac{1}{B},$$
 $c_3 = \frac{2}{B^2},$ $c_4 = -\frac{6}{B^3},$
 $\hat{c}_{i,j} = \hat{c}_{i,j} + \frac{\kappa_2[V]}{\langle V \rangle^2},$ for $i+j=2.$

• + (uniform) efficiency

[Pruneau, Gavin, Voloshin, PRC 66, 044904 (2002)]

all lead to

$$\frac{\hat{C}_k}{\langle N \rangle^k} = const.$$
 at a given $\sqrt{s_{NN}}$ and

$$\frac{\hat{C}_2^p}{\left\langle N_p \right\rangle^k} \approx \frac{\hat{C}_2^{\overline{p}}}{\left\langle N_{\overline{p}} \right\rangle^k} = const. \quad \text{at a given } \sqrt{S_{NN}}$$

Can be tested without CBWC/volume fluctuations correction A. Bzdak, V. Koch, VV, in preparation

Scaled factorial cumulants from RHIC-BES-I

Significant difference between p and \bar{p} in BES-I not explained by hydro •

no single thermalized fireball?

A. Bzdak, V. Koch, VV, in preparation

Two-component model: produced ($p\bar{p}$ pairs) and stopped protons come from two independent fireballs

Data lie in-between single and two-fireball models

A. Bzdak, V. Koch, VV, in preparation

- **Opportunities/wishlist for BES-II:** Acceptance dependence of scaled factorial cumulants
- Further tests of the splitting between p and \bar{p} in 2nd order cumulants with extended y coverage
- Covariance $c_{1,1}^{p,\bar{p}}$ to probe baryon annihilation
- Critical point signal expected to break the scaling

Charge fluctuations as a signature of QGP

• J. Parra, R. Poberezhniuk, V. Koch, C. Ratti, VV, in preparation

An old idea: Hadrons carry integer electric charges, quarks carry *fractional* electric charges.

Fluctuations depend on the square of the charges and are smaller in the QGP

Quantified by:

$$D = 4 \frac{\kappa_2 [N_+ - N_-]}{\langle N_{\rm ch} \rangle} = 4 \frac{\kappa_2 [Q]}{\langle Q^+ + Q^- \rangle}$$

Naïve grand canonical ensemble (GCE) expectations:

- $D_{HG} \approx 2.8 4$
- $D_{QGP} \approx 1 1.5$

No quantitative calculations have been done for QGP beyond GCE

Measurements came and went, conclusions are ambiguous. What more can be done?

Charge fluctuations: stages

Here we model these effects through novel charge density correlations formalism [VV, PRC '14]

UNIVERSITY OF HOUSTON

Define ω as a measure of charge fluctuations at hadronization

P. Hanus, A. Mazeliauskas, K. Reygers, PRC (2019)

2. Hadronic phase (resonance decays)

- Decays are local and conserve charge but increase charged multiplicity, $\langle N_{ch} \rangle = \langle N_{ch}^{prim} \rangle \gamma_Q$, where $\gamma_Q \approx 1.67$
- Total charge susceptibility does not change, $\chi_2^{Q,final} = \chi_2^{Q,prim}$, but balance between self-correlation and two-particle correlations does

3. Local charge conservation [VV, PRC 110, L061902 (2024)]

- 2-point charge density correlator with a balancing term
- Local charge conservation introduced through modulation of the balancing term

$$\mathcal{C}_{2}^{Q}(\mathbf{r}_{1},\mathbf{r}_{2}) = \chi_{2}^{Q} \left[\delta(\mathbf{r}_{1}-\mathbf{r}_{2}) - \frac{\varkappa(\mathbf{r}_{1},\mathbf{r}_{2})}{V_{\text{tot}}} \right] \quad \mathbf{r} = \eta$$

$$\begin{array}{c} \mathbf{r} = \eta \end{array}$$

$$\mathcal{C}_2^Q(\mathbf{r}_1,\mathbf{r}_2)\equiv \langle\delta
ho_Q(\mathbf{r}_1)\delta
ho_Q(\mathbf{r}_2)
angle$$

$$\varkappa(\eta_1,\eta_2) \propto \exp\left[-\frac{(\eta_1-\eta_2)^2}{2\sigma_\eta^2}\right]$$

local charge conservation

4. Kinematical cuts

$$\kappa_{2}[Q]|_{|\eta| < \eta_{\rm cut}} \propto \int_{-\eta_{\rm cut}/2}^{\eta_{\rm cut}/2} d\eta_{1} \int_{-\eta_{\rm cut}/2}^{\eta_{\rm cut}/2} d\eta_{2} C_{2}^{Q}(\eta_{1},\eta_{2}) p(\eta_{1}) p(\eta_{2})$$

Acceptance probability $p(\eta)$ from blast-wave model

Putting everything together

 ω - Charge fluctuations at hadronization

$$\omega_{HG} = 1$$
 $\omega_{QGP} = 0.36$

 γ_Q - Resonance decays

 $\langle p(\eta_1)p(\eta_2)
angle_{arkappa}$ - Pair acceptance weighted with Local Charge Conservation

 $\frac{\langle p^2(\eta) \rangle}{\langle p(\eta) \rangle} - \text{Momentum Acceptance Cuts}$ $\underset{\text{using } p(\eta) \text{ from the blast-wave model}}{\text{Womentum Acceptance Cuts}}$

D-measure at LHC: comparison with experiment

Parameters used: $\omega_{HG} = 1$ $\omega_{QGP} = 0.36$ $\gamma_0 = 1.67$

- Vary σ_v to accommodate global vs local charge conservation
 - Here values of σ_{v} are based on local baryon conservation estimates VV, PRC 110, L061902 (2024)

Hadron gas scenario requires a very local charge conservation range

Vary primordial fluctuation ω (HG vs QGP) and correlation volume V_C (local conservation) freely

- Uniform prior $\omega \in U(0, 1.2), \quad V_c \in U(0, V_{tot}),$ Bayes factor (QGP : HG) = 8.74
- Local conservation prior $\omega \in U(0, 1.2), V_c \in \text{Gaussian at } (0.20 \pm 0.05)V_{tot}$ Bayes factor (QGP : HG) = 4.93

Moderate evidence for freeze-out of charge fluctuations in QGP

Sensitivity to assumed prior currently under investigation

Summary

Outlook:

٠

- Improved description of non-critical baselines and quantitative predictions of critical fluctuations
- Acceptance dependence of factorial cumulants, understanding antiprotons

Thanks for your attention!

HG

QGP