Fluctuations and correlations in heavy-ion collisions as a probe of the QCD phase structure

Volodymyr Vovchenko (University of Houston)

Particle-Astro-Nuclear (PAN) Physics Seminar, Wayne State University

September 6, 2024

UNIVERSITY OF HOUSTON

What we know

- Dilute hadron gas at low T & $\mu_{\rm B}$ due to confinement, quark-gluon plasma high T & $\mu_{\rm B}$
- Nuclear liquid-gas transition in cold and dense matter, lots of other phases conjectured
- Chiral crossover at $\mu_B = 0$

QCD under extreme conditions

- Dilute hadron gas at low T & $\mu_{
 m B}$ due to confinement, quark-gluon plasma high T & $\mu_{
 m B}$
- Nuclear liquid-gas transition in cold and dense matter, lots of other phases conjectured
- Chiral crossover at $\mu_B = 0$ which may turn into a *first-order phase transition* at finite μ_B

QCD under extreme conditions

- Dilute hadron gas at low T & $\mu_{
 m B}$ due to confinement, quark-gluon plasma high T & $\mu_{
 m B}$
- Nuclear liquid-gas transition in cold and dense matter, lots of other phases conjectured
- Chiral crossover at $\mu_B = 0$ which may turn into a *first-order phase transition* at finite μ_B

Key question: Is there a QCD critical point and how to find it?

Extrapolations from lattice QCD at $\mu_B = 0$

UNIVERSIT HOUST

Ideally, find the critical point through first-principle lattice QCD simulations at finite μ_B

0.35

0.3

0.25

0.2

0.15

0.2

0.1

 c_s^2

 $s/n_{\rm B} = 15$

90 130

50

• Challenging (sign problem), but perhaps not impossible? [Borsanyi et al., Phys. Rev. D 107, 091503L (2023)]

Taylor expansion + various resummations and extrapolation schemes from $\mu_B = 0$

alternative expansion scheme

[Borsanyi et al. (WB), Phys. Rev. D 105, 114504 (2022)]

[Bollweg et al. (HotQCD), Phys. Rev. D 108, 014510 (2023)]

s/n_B = ∞

400

100

Padé approximants

No indications for the strengthening of the chiral crossover or critical point signals Disfavors QCD critical point at $\frac{\mu_B}{T} < 3$

Searching for singularities in the complex plane

• See if it approaches the real axis as temperatures decreases

Critical Point: 3D-Ising scaling inspired fit:

$$Im \mu_{LY} = c(T - T_{CEP})^{\Delta}$$

$$Re \mu_{LY} = \mu_{CEP} + a(T - T_{CEP}) + b(T - T_{CEP})^{2}$$

$$T \sim 90-110 \text{ MeV}, \ \mu_{B} \sim 400-600 \text{ MeV}$$

NB: many things have to go right, systematic error still very large (up to 100%), no continuum limit (likely large cut-off effects)

UNIVERSITY OF

Effective QCD theories predictions

All in excellent agreement with lattice QCD at $\mu_B = 0$ and predict QCD critical point in a similar ballpark of $\mu_B/T \sim 5-6$

If true, reachable in heavy-ion collisions at $\sqrt{s_{NN}} \sim 3-5$ GeV

Control parameters

- Collision energy $\sqrt{s_{NN}} = 2.4 5020 \text{ GeV}$
 - Scan the QCD phase diagram
- Size of the collision region
 - Expect stronger signal in larger systems

Measurements

 Final hadron abundances and momentum distributions event-by-event

Chemical freeze-out curve and CP

- Sets lower bound on the temperature of the CP
- **Caveats:** strangeness neutrality ($\mu_S \neq 0$), uncertainty in the freeze-out curve

A. Lysenko, Poberezhnyuk, Gorenstein, VV, arXiv:2408.06473

Cumulants measure chemical potential derivatives of the (QCD) equation of state

• (QCD) critical point: large correlation length and fluctuations

M. Stephanov, PRL '09, '11 Energy scans at RHIC (STAR) and CERN-SPS (NA61/SHINE)

$$\kappa_2 \sim \xi^2$$
, $\kappa_3 \sim \xi^{4.5}$, $\kappa_4 \sim \xi^7$

 $\xi o \infty$

Looking for enhanced fluctuations and non-monotonicities

Other uses of cumulants:

- QCD degrees of freedom Jeon, Koch, PRL 85, 2076 (2000) Asakawa, Heinz, Muller, PRL 85, 2072 (2000)
- Extracting the speed of sound A. Sorensen et al., PRL 127, 042303 (2021)
- Conservation volume V_C VV, Donigus, Stoecker, PRC 100, 054906 (2019)

Example: (Nuclear) Liquid-gas transition

VV, Anchishkin, Gorenstein, Poberezhnyuk, PRC 92, 054901 (2015)

Critical opalescence

 $\langle N^2 \rangle - \langle N \rangle^2 \sim \langle N \rangle \sim 10^{23}$ in equilibrium

Example: Critical fluctuations in a microscopic simulation

V. Kuznietsov et al., Phys. Rev. C 105, 044903 (2022)

0.50

α

0.75

1.0

g.c.e.

N = 400

Classical molecular dynamics simulations of the Lennard-Jones fluid near Z(2) critical point ($T \approx 1.06T_c$, $n \approx n_c$) of the liquid-gas transition

Scaled variance in coordinate space acceptance $|z| < z^{max}$

- Large fluctuations survive despite strong finite-size effects
- Need coordinate space cuts (collective flow helps)
- Here no finite-time effects

Collective flow and finite-time effects explored in V. Kuznietsov et al., Phys. Rev. C 110, 015206 (2024)

Heavy-ion collisions: flow correlates p_z and z cuts

Measuring cumulants in heavy-ion collisions

Cumulants are extensive, $\kappa_n \sim V$, use ratios to cancel out the volume

$$\frac{\kappa_2}{\langle N \rangle}$$
, $\frac{\kappa_3}{\kappa_2}$, $\frac{\kappa_4}{\kappa_2}$

Look for subtle critical point signals

Theory vs experiment: Challenges for fluctuations

Theory

 $\ensuremath{\mathbb{C}}$ Lattice QCD@BNL

- Coordinate space
- In contact with the heat bath
- Conserved charges
- Uniform
- Fixed volume

Experiment

STAR event display

- Momentum space
- Expanding in vacuum
- Non-conserved particle numbers
- Inhomogenous
- Fluctuating volume

Need dynamical description

Coordinate vs Momentum space

V. Kuznietsov et al., Phys. Rev. C 110 (2024) 015206

Utilizing the partition function in thermodynamic limit one can compute n-point density correlators

$$\begin{split} \mathcal{C}_{1}(\mathbf{r}_{1}) &= \rho(\mathbf{r}_{1}) \\ \mathcal{C}_{2}(\mathbf{r}_{1}, \mathbf{r}_{2}) &= \chi_{2}\delta(\mathbf{r}_{1} - \mathbf{r}_{2}) - \frac{\chi_{2}}{V} \\ \text{local correlation balancing contribution} \\ \text{(e.g. baryon conservation)} \\ \mathcal{C}_{3}(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}) &= \chi_{3}\delta_{1,2,3} - \frac{\chi_{3}}{V}[\delta_{1,2} + \delta_{1,3} + \delta_{2,3}] + 2\frac{\chi_{3}}{V^{2}} \\ \text{local correlation balancing contributions} \\ \mathcal{C}_{4}(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}, \mathbf{r}_{4}) &= \chi_{4}\delta_{1,2,3,4} - \frac{\chi_{4}}{V}[\delta_{1,2,3} + \delta_{1,2,4} + \delta_{1,3,4} + \delta_{2,3,4}] - \frac{(\chi_{3})^{2}}{\chi_{2}V}[\delta_{1,2}\delta_{3,4} + \delta_{1,3}\delta_{2,4} + \delta_{1,4}\delta_{2,3}] \\ \text{local correlation balancing contributions} \\ \mathcal{C}_{4}(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}, \mathbf{r}_{4}) &= \chi_{4}\delta_{1,2,3,4} - \frac{\chi_{4}}{V}[\delta_{1,2,3} + \delta_{1,2,4} + \delta_{1,3,4} + \delta_{2,3,4}] - \frac{(\chi_{3})^{2}}{\chi_{2}V}[\delta_{1,2}\delta_{3,4} + \delta_{1,3}\delta_{2,4} + \delta_{1,4}\delta_{2,3}] \\ \text{local correlation here} \\ + \frac{1}{V^{2}}\left[\chi_{4} + \frac{(\chi_{3})^{2}}{\chi_{2}}\right][\delta_{1,2} + \delta_{1,3} + \delta_{1,4} + \delta_{2,3} + \delta_{2,4} + \delta_{3,4}] - \frac{3}{V^{3}}\left[\chi_{4} + \frac{(\chi_{3})^{2}}{\chi_{2}}\right] . \end{split}$$

Integrating the correlator reproduces known cumulant inside a subsystem

$$\kappa_n[B_{V_s}] = \int_{\mathbf{r}_1 \in V_s} d\mathbf{r}_1 \dots \int_{\mathbf{r}_n \in V_s} d\mathbf{r}_n \, \mathcal{C}_n(\{\mathbf{r}_i\})$$

VV, Savchuk, Poberezhnyuk, Gorenstein, Koch, Phys. Lett. B 811, 135868 (2020)

Proton cumulants at high energy

κ₂[p − p̄]/⟨p + p̄⟩:
Largely understood as (global) baryon conservation
Larger suppression at 5 TeV contrary to naïve expectation

- Interplay: baryon annihilation(\nearrow) vs local conservation(\checkmark)
 - Additional measurement of $\kappa_2[p + \bar{p}]$ can resolve it O. Savchuk et al., PLB 827, 136983 (2022)

ALICE Collaboration, PLB 844, 137545 (2023)

Hadron cumulants at LHC and local conservation

Slide from M. Ciacco, SQM2024

Correlation volume V_C: truncate the fireball around few units of midrapidity and treat it canonically VV, Donigus, Stoecker, PRC 100, 054906 (2019)

Local baryon conservation from density correlator VV. arXiv:2409.01397

Introduce Gaussian (space-time) rapidity correlation into baryon-conservation balancing term

+ local conservation

global conservation

• Linear regime at small a establishes connection to the V_C approach $(V_C = k dV/dy, k \approx \sqrt{2\pi}\sigma_\eta)$

- V_C approach has limitations, likely provides upper bound on the conservation volume
- Evidence for local (not just global) baryon conservation for 5 TeV data (in contrast to 2.76 TeV data)

Local baryon conservation and charge balance functions

Density correlators from canonical ensemble allow one to explore relation between susceptibilities and balance functions

 $B(\mathbf{r}_1|\mathbf{r}_2) = \frac{1}{2} \left[\rho_2^{+-}(\mathbf{r}_1|\mathbf{r}_2) - \rho_2^{--}(\mathbf{r}_1|\mathbf{r}_2) + \rho_2^{-+}(\mathbf{r}_1|\mathbf{r}_2) - \rho_2^{++}(\mathbf{r}_1|\mathbf{r}_2) \right]$ Bass, Danielewicz, Pratt, PRL 85, 2689 (2000)

Baryons and antibaryons :

or

$$B^{+-}(\mathbf{r}_1, \mathbf{r}_2) = \frac{1}{\langle N^- \rangle} \left[C_{11}^{+-}(\mathbf{r}_1, \mathbf{r}_2) - C_2^{--}(\mathbf{r}_1, \mathbf{r}_2) \right],$$

$$B^{-+}(\mathbf{r}_1, \mathbf{r}_2) = \frac{1}{\langle N^+ \rangle} \left[C_{11}^{-+}(\mathbf{r}_1, \mathbf{r}_2) - C_2^{++}(\mathbf{r}_1, \mathbf{r}_2) \right],$$

0.2

0.4

0.6

Δy

0.8

Pruneau et al., PRC 107, 014902 (2023)

1.2

1.0

- 1. Dynamical model calculations of critical fluctuations
 - Fluctuating hydrodynamics (hydro+) and (non-equilibrium) evolution of fluctuations
 - Equation of state with a tunable critical point [P. Parotto et al, PRC 101, 034901 (2020); J. Karthein et al., EPJ Plus 136, 621 (2021)]
 - Generalized Cooper-Frye particlization [M. Pradeep, et al., PRD 106, 036017 (2022); PRL 130, 162301 (2023)]

Alternatives at high μ_B : hadronic transport/molecular dynamics with a critical point [A. Sorensen, V. Koch, PRC 104, 034904 (2021); V. Kuznietsov et al., PRC 105, 044903 (2022)]

2. Deviations from precision calculations of non-critical fluctuations

- Non-critical baseline is not flat [Braun-Munzinger et al., NPA 1008, 122141 (2021)]
- Include essential non-critical contributions to (net-)proton number cumulants
- Exact baryon conservation + hadronic interactions (hard core repulsion)
- Based on realistic hydrodynamic simulations tuned to bulk data [VV, C. Shen, V. Koch, Phys. Rev. C 105, 014904 (2022)]

Calculation of non-critical contributions at RHIC-BES

VV, V. Koch, C. Shen, Phys. Rev. C 105, 014904 (2022)

- (3+1)-D viscous hydrodynamics evolution (MUSIC-3.0)
 - Collision geometry-based 3D initial state [Shen, Alzhrani, PRC 102, 014909 (2020)]
 - Crossover equation of state based on lattice QCD
 [Monnai, Schenke, Shen, Phys. Rev. C 100, 024907 (2019)]
 - Cooper-Frye particlization at $\epsilon_{sw} = 0.26 \text{ GeV}/\text{fm}^3$
- Non-critical contributions are computed at particlization
 - QCD-like baryon number distribution (χ_n^B) via excluded volume b = 1 fm³ [VV, V. Koch, Phys. Rev. C 103, 044903 (2021)]
 - Exact global baryon conservation* (and other charges)
 - Subensemble acceptance method 2.0 (analytic) [VV, Phys. Rev. C 105, 014903 (2022)]
 - or FIST sampler (Monte Carlo) [VV, Phys. Rev. C 106, 064906 (2022)] https://github.com/vlvovch/fist-sampler
- Absent: critical point, local conservation, initial-state/volume fluctuations, hadronic phase

*If baryon conservation is the only effect (no other correlations), non-critical baseline can be computed without hydro Braun-Munzinger, Friman, Redlich, Rustamov, Stachel, NPA 1008, 122141 (2021)

Cooper-Frye formula:

$$\omega_p rac{dN_j}{d^3p} = \int_{\sigma(x)} d\sigma_\mu(x) \, p^\mu \, f_j[u^\mu(x)p_\mu;T(x),\mu_j(x)]$$

Calculation of the cumulants incorporates **balancing contributions from baryon conservation***

$$C_{1}^{B}(x_{1}) = \chi_{1}^{B}(x_{1}),$$

$$C_{2}^{B}(x_{1}, x_{2}) = \chi_{2}^{B}(x_{1}) \,\delta(x_{1} - x_{2}) - \frac{\chi_{2}^{B}(x_{1})\chi_{2}^{B}(x_{2})}{\int_{\sigma(x)} d\sigma_{\mu}(x) u^{\mu}(x) \,\chi_{2}^{B}(x)},$$

$$\int d\sigma_{\mu}(x_{i}) u^{\mu}(x_{i}) C_{n}^{B}(x_{1}, \dots, x_{n}) = 0 \quad \text{for} \quad n > 1$$

$$\dots$$

$$Determine (baryon conservation)$$

Generalized Cooper-Frye:

$$\kappa_n^B = \prod_{i=1}^n \int_{x_i \in \sigma(x)} d\sigma_\mu(x_i) \int_{|y_i| < 0.5, \ 0.4 < p_T < 2} \frac{d^3 p_i}{\omega_{p_i}} p_i^\mu \exp\left[-\frac{p_i^\mu u_\mu(x_i)}{T(x_i)}\right] C_n^B(x_1, \dots, x_n)$$

RHIC-BES-I: Net proton cumulant ratios (MUSIC)

VV, V. Koch, C. Shen, Phys. Rev. C 105, 014904 (2022)

- Data at $\sqrt{s_{NN}} \ge 20$ GeV consistent with non-critical physics (BQS conservation and repulsion)
- Effect from baryon conservation is stronger than repulsion but both are required at $\sqrt{s_{NN}} \ge 20$ GeV
- Deviations from baseline at lower energies?

Hints from RHIC-BES-I

VV, V. Koch, C. Shen, Phys. Rev. C 105, 014904 (2022)

Subtracting the hydro baseline

• No smoking gun signature for CP in ordinary cumulants

• More structure seen in factorial cumulants

Ordinary cumulants

Factorial cumulants

What are factorial cumulants?

Factorial cumulants \hat{C}_n vs ordinary cumulants C_n

NIVERSITY OF OUSTON

Factorial cumulants: ~irreducible n-particle correlations

$$C_n \sim \langle N(N-1)(N-2) \dots
angle_c$$

 $\hat{C}_1 = C_1$
 $\hat{C}_2 = C_2 - C_1$
 $\hat{C}_3 = C_3 - 3C_2 + 2C_1$
 $\hat{C}_4 = C_4 - 6C_3 + 11C_2 - 6C_1$

[Bzdak, Koch, Strodthoff, PRC 95, 054906 (2017); Kitazawa, Luo, PRC 96, 024910 (2017); C. Pruneau, PRC 100, 034905 (2019)]

Factorial cumulants and different physics mechanisms

- Baryon conservation [Bzdak, Koch, Skokov, EPJC '17]
- Excluded volume [VV et al, PLB '17]
- Volume fluctuations [Holzman et al., arXiv:2403.03598]
- Critical point [Ling, Stephanov, PRC '16]

 $\hat{C}_n^{
m cons} \propto (\hat{C}_1)^n / \langle N_{
m tot}
angle^{n-1}$ small $\hat{C}_n^{
m EV} \propto b^n$ small $egin{aligned} C_1 &= \hat{C}_1 \ C_2 &= \hat{C}_2 + \hat{C}_1 \end{aligned}$

Ordinary cumulants: mix corrs. of different orders

 $C_n \sim \langle \delta N^n \rangle_c$

 $C_3 = \hat{C}_3 + 3\hat{C}_2 + \hat{C}_1$ $C_4 = \hat{C}_4 + 6\hat{C}_3 + 7\hat{C}_2 + \hat{C}_1$

- proton vs baryon $\hat{C}_n^B \sim 2^n \times \hat{C}_n^p$ same sign! [Kitazawa, Asakawa, PRC '12]
- $\hat{C}_n^{CF} \sim (\hat{C}_1)^n \kappa_n[V]$ depends on volume cumulants
- $\hat{C}_2^{CP} \sim \xi^2$, $\hat{C}_3^{CP} \sim \xi^{4.5}$, $\hat{C}_4^{CP} \sim \xi^7$ large

Factorial cumulants and long-range correlations

A. Bzdak, V. Koch, VV, in preparation

•

From M. Stephanov (SQM2024):

$$\omega_n = \hat{C}_n / \hat{C}_1$$

Bzdak et al review 1906.00936

Expected signatures: bump in ω_2 and ω_3 , dip then bump in ω_4 for CP at $\mu_B > 420$ MeV

UNIVERSITY OF

Factorial cumulants from RHIC-BES-II

From M. Stephanov (SQM2024):

baseline (hydro):

VV, V. Koch, C. Shen, PRC 105, 014904 (2022)

Bzdak et al review 1906.00936

Expected signatures: bump in ω_2 and ω_3 , dip then bump in ω_4 for CP at $\mu_B > 420$ MeV

Factorial cumulants from RHIC-BES-II

From M. Stephanov (SQM2024):

baseline (hydro):

VV, V. Koch, C. Shen, PRC 105, 014904 (2022)

- describes right side of the peak in \hat{C}_3
- implies
 - positive \hat{C}_2 baseline > 0
 - *negative* \hat{C}_3 baseline < 0

Bzdak et al review 1906.00936

Expected signatures: bump in ω_2 and ω_3 , dip then bump in ω_4 for CP at $\mu_B > 420$ MeV

Factorial cumulants from RHIC-BES-II and CP

Adapted from Bzdak, Koch, Strodthoff, PRC 95, 054906 (2017)

UNIVERSITY OF HOUSTON

Factorial cumulants from RHIC-BES-II and CP

How it may look like in $T - \mu_B$ plane

Based on QvdW model of nuclear matter VV, Anchishkin, Gorenstein, Poberezhnyuk, PRC 92, 054901 (2015)

Freeze-out of fluctuations of the QGP side of the crossover?

Nuclear liquid-gas transition

HRG with attractive and repulsive interactions among baryons

VV, Gorenstein, Stoecker, Phys. Rev. Lett. 118, 182301 (2017)

Nuclear liquid-gas transition

VV, Gorenstein, Stoecker, Phys. Rev. Lett. 118, 182301 (2017)

Factorial cumulants and nuclear liquid-gas transition

Calculation in a van der Waals-like HRG model

VV, Gorenstein, Stoecker, EPJA 54, 16 (2018)

Shaded regions: negative values

UNIVERSITY OF

Factorial cumulants and nuclear liquid-gas transition

UNIVERSITY OF HOUSTON

Calculation in a van der Waals-like HRG model along the freeze-out curve*

VV, Gorenstein, Stoecker, EPJA 54, 16 (2018)

*Poberezhnyuk et al., PRC 100, 054904 (2019)

Summary

- Proton cumulants are uniquely sensitive to the the CP but challenging to model dynamically
 - local charge conservation
 - factorial cumulants are especially advantageous
- BES-II data
 - Protons are consistent with the *prediction* from non-critical hydro at $\sqrt{s_{NN}} \ge 20$ GeV
 - Non-monotonic structure in factorial cumulants
 - Positive \hat{C}_2 and negative \hat{C}_3 after subtracting non-critical baseline at $\sqrt{s_{NN}} < 10$ GeV
 - QGP side of the crossover using naïve equilibrium interpretation
 - Nuclear liquid-gas contribution?

Outlook:

- Improved description of local conservation, volume fluctuations, and nuclear interactions
- Test global conservation + volume fluctuations baseline through $\hat{C}_n/(\hat{C}_1)^n$ scaling
- Understanding factorial cumulants of antiprotons

Thanks for your attention!