Fluctuations as a probe of QCD critical point in light of RHIC BES-II

Volodymyr Vovchenko (University of Houston)

On-line seminar series on RHIC Beam Energy Scan

October 22, 2024

Thanks to:

M.I. Gorenstein, M. Hippert, M. Kahangirwe, V. Koch, V.A. Kuznietsov, A. Lysenko, J. Noronha, R. Poberezhniuk, C. Ratti, O. Savchuk, H. Shah, J. Steinheimer, H. Stoecker

QCD under extreme conditions

- Dilute hadron gas at low T & $\mu_{
 m B}$ due to confinement, quark-gluon plasma high T & $\mu_{
 m B}$
- Nuclear liquid-gas transition in cold and dense matter, lots of other phases conjectured
- Chiral crossover at $\mu_B = 0$ which may turn into a *first-order phase transition* at finite μ_B

Key question: Is there a QCD critical point and how to find it?

QCD critical point theory estimates: New developments

Critical point predictions as of a few years ago

All over the place...

Figure adapted from A. Pandav, D. Mallick, B. Mohanty, Prog. Part. Nucl. Phys. 125 (2022)

Including the possibility that the QCD critical point does not exist at all

de Forcrand, Philipsen, JHEP 01, 077 (2007); VV, Steinheimer, Philipsen, Stoecker, PRD 97, 114030 (2018)

Effective QCD theories anchored with lattice QCD

- All in excellent agreement with lattice QCD at $\mu_B = 0$ and predict QCD critical point in a similar ballpark of $\mu_B/T \sim 5-6$
- Other estimates:
 - Finite-size scaling of heavy-ion observables [R. Lacey, PRL 114, 142301 (2015); A. Sorensen, P. Sorensen, arXiv:2405.10278]
 - Extrapolation of Yang-Lee edge singularities [D.A. Clarke et al. (Bielefeld-Parma), arXiv:2405.10196; G. Basar, PRC 110, 015203 (2024)] 4

Searching for singularities in the complex plane

Critical point is a singularity on the real μ_B axis, which turns into **Yang-Lee edge singularities** above T_c in the complex plane

M. Stephanov, PRD 73, 094508 (2006)

Strategy: Extract YL edge singularity through (multi-point) Pade fits and see if it approaches the real axis as temperatures decreases

D.A. Clarke et al. (Bielefeld-Parma), arXiv:2405.10196; G. Basar, PRC 110, 015203 (2024)

many things have to go right, systematic error still very large (up to 100%)

Locating the QCD critical point from first principles through contours of constant entropy density

Hitansh Shah, Mauricio Hippert, Jorge Noronha, Claudia Ratti, VV, arXiv:2410.16206

(Dated: October 22, 2024)

Critical point and crossings of entropy density

New expansion

Define the s = const. line in T- μ_B plane as an expansion around $\mu_B = 0$

$$T_{s}(\mu_{B};T_{0}) \approx T_{0} + \sum_{n=1}^{N} \alpha_{2n}(T_{0}) \frac{\mu_{B}^{2n}}{(2n)!} + \mathcal{O}\left(\mu_{B}^{2(N+1)}\right) \quad \alpha_{2n}(T_{0}) = \left. \left(\frac{\partial^{2n}T}{\partial\mu_{B}^{2n}} \right)_{s} \right|_{T=T_{0},\mu_{B}=0} \quad \alpha_{2}(T_{0}) = -\frac{2T_{0}\chi_{2}^{B}(T_{0}) + T_{0}^{2}\chi_{2}^{B'}(T_{0})}{s'(T_{0})}$$

Parametrized continuum-extrapolated lattice QCD input $[s(T), \chi_2^B(T)]$ from Bayesian analysis

Lattice data for s(T): Borsanyi et al., PLB 730, 99 (2014) Lattice data for $\chi_2^B(T)$: Borsanyi et al., PRL 126, 232001 (2021)

Propagation of the correlated lattice QCD uncertainties through Monte Carlo sampling of the parameter posterior distribution

Entropy density at finite μ_B

• Excellent agreement at low μ_B/T with available lattice QCD constraints

[Borsanyi et al., PRL 126, 232001 (2021)]

• First-order phase transition emerges at $\mu_B > 600 \text{ MeV}$

H. Shah, M. Hippert, J. Noronha, C. Ratti, VV, arXiv:2410.16026

Locating the critical point

Second solution: CP at *imaginary* μ_B $\tilde{T}_c = 197.1 \pm 7.1 \text{ MeV}, \quad \frac{\tilde{\mu}_{B,c}}{\tilde{T}_c} = i(3.50 \pm 0.30)$ cf. *Roberge-Weiss endpoint* at $T_{RW} = 208 \pm 5 \text{ MeV}, \quad \mu_{B,RW}/T_{RW} = i\pi$

Bonati et al., PRD 93, 074504 (2016) H. Shah, M. Hippert, J. Noronha, C. Ratti, VV, arXiv:2410.16026 10

Cross-check using **splines** in place of **parametrization** yields consistent results

Other CP estimates from recent literature:

YLE-1: D.A. Clarke et al. (Bielefeld-Parma), arXiv:2405.10196
YLE-2: G. Basar, PRC 110, 015203 (2024)
BHE: M. Hippert et al., arXiv:2309.00579
FRG: W-J. Fu et al., PRD 101, 054032 (2020)
DSE: P.J. Gunkel et al., PRD 104, 052022 (2021)
FSS: A. Sorensen et al., arXiv:2405.10278

Search for critical point with heavy-ion collisions

Control parameters

- Collision energy $\sqrt{s_{NN}} = 2.4 5020 \text{ GeV}$
 - Scan the QCD phase diagram
- Size of the collision region
 - Expect stronger signal in larger systems

Measurements

 Final hadron abundances and momentum distributions event-by-event

150 blue: splines 140 red/black: parametrization 130 7.7 Critical Point T [MeV] 120 Shah et al., arXiv:2410.16026 110 5 PHI 100 90 Chemical freeze-out bound 3.5 80 500 600 700 800 400 μ_B [MeV]

Chemical freeze-out curve and CP [Artemiy Lysenko, Poberezhnyuk, Gorenstein, VV, arXiv:2408.06473]

- Sets the lower bound on the temperature of the CP
- **Caveats:** strangeness neutrality ($\mu_S \neq 0$), uncertainty in the freeze-out curve
- Estimate through constant energy-per-hadron criterion [Cleymans, Redlich, arXiv:2408.06473]

Critical point, cumulants, and heavyion collisions

Cumulants measure chemical potential derivatives of the (QCD) equation of state

• (QCD) critical point: large correlation length and fluctuations

M. Stephanov, PRL '09, '11 Energy scans at RHIC (STAR) and CERN-SPS (NA61/SHINE)

$$\kappa_2 \sim \xi^2$$
, $\kappa_3 \sim \xi^{4.5}$, $\kappa_4 \sim \xi^7$

 $\xi o \infty$

Looking for enhanced fluctuations and non-monotonicities

Other uses of cumulants:

- QCD degrees of freedom Jeon, Koch, PRL 85, 2076 (2000) Asakawa, Heinz, Muller, PRL 85, 2072 (2000)
- Extracting the speed of sound A. Sorensen et al., PRL 127, 042303 (2021)
- Conservation volume V_C VV, Donigus, Stoecker, PRC 100, 054906 (2019)

Example: (Nuclear) Liquid-gas transition

VV, Anchishkin, Gorenstein, Poberezhnyuk, PRC 92, 054901 (2015)

Critical opalescence

 $\langle N^2 \rangle - \langle N \rangle^2 \sim \langle N \rangle \sim 10^{23}$ in equilibrium

UNIVERSITY OF

Example: Critical fluctuations in a microscopic simulation

V. Kuznietsov et al., Phys. Rev. C 105, 044903 (2022)

g.c.e.

1.0

N = 25000

= 5000

N = 1000

N = 400

Classical molecular dynamics simulations of the **Lennard-Jones fluid** near Z(2) critical point ($T \approx 1.06T_c$, $n \approx n_c$) of the liquid-gas transition

Scaled variance in coordinate space acceptance $|z| < z^{max}$

Heavy-ion collisions: flow correlates p_z and z cuts

- Large fluctuations survive despite strong finite-size effects
- Need coordinate space cuts (collective flow helps)
- Here no finite-time effects

~coord

Collective flow and finite-time effects explored in V. Kuznietsov et al., Phys. Rev. C 110, 015206 (2024)

Non-Gaussian fluctuations from molecular dynamics

Non-Gaussian fluctuations from molecular dynamics

• (Non-)Gaussian cumulants equilibrate on comparable time scales

see also X. An et al., PRL 127, 072301 (2021); C. Chattopadhyay et al., PRL 133, 032301 (2024)

Measuring cumulants in heavy-ion collisions

Cumulants are extensive, $\kappa_n \sim V$, use ratios to cancel out the volume

$$\frac{\kappa_2}{\langle N \rangle}$$
, $\frac{\kappa_3}{\kappa_2}$, $\frac{\kappa_4}{\kappa_2}$

Look for subtle critical point signals

Theory vs experiment: Challenges for fluctuations

Theory

 $\ensuremath{\mathbb{C}}$ Lattice QCD@BNL

- Coordinate space
- In contact with the heat bath
- Conserved charges
- Uniform
- Fixed volume

Experiment

STAR event display

- Momentum space
- Expanding in vacuum
- Non-conserved particle numbers
- Inhomogenous
- Fluctuating volume

Need dynamical description

Exact charge conservation

- global, $\sigma_y \rightarrow \infty \leftrightarrow V_C = V_{\text{total}}$ - local, $\sigma_y = 2.02 \leftrightarrow V_C = 5 \text{ dV/dy}$ - local, $\sigma_y = 1.20 \leftrightarrow V_C = 3 \text{ dV/dy}$

− local, $\sigma_y = 0.64 \leftrightarrow V_c = 1.6 \text{ dV/dy}$ − local, $\sigma_y = 0.40 \leftrightarrow V_c = 1 \text{ dV/dy}$

---- Gaussian

0.8

1.0

VV, Savchuk, Poberezhnyuk, Gorenstein, Koch, PLB 811, 135868 (2020); VV, arXiv:2409.01397

LHC: Y_{cut}

1.0

*k*₂[B−<u>B</u>]/(B+B) 9.0 9.0

0.2

0.0

0.5 1 1.5 2

0.2

0.4

0.6

α

Utilizing the canonical partition function in thermodynamic limit compute **n-point density correlators**

$$\begin{split} \mathcal{C}_{1}(\mathbf{r}_{1}) &= \rho(\mathbf{r}_{1}) \\ \mathcal{C}_{2}(\mathbf{r}_{1}, \mathbf{r}_{2}) &= \chi_{2}\delta(\mathbf{r}_{1} - \mathbf{r}_{2}) - \frac{\chi_{2}}{V} \\ \text{local correlation} \quad \text{balancing contribution} \\ (e.g. baryon conservation) \\ \mathcal{C}_{3}(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}) &= \chi_{3}\delta_{1,2,3} - \frac{\chi_{3}}{V}[\delta_{1,2} + \delta_{1,3} + \delta_{2,3}] + 2\frac{\chi_{3}}{V^{2}} \qquad \delta_{1,...,n} = \prod_{i=2}^{n} \delta(\mathbf{r}_{1} - \mathbf{r}_{i}) \\ \text{local correlation} \qquad \text{balancing contributions} \\ \mathcal{C}_{4}(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}, \mathbf{r}_{4}) &= \chi_{4}\delta_{1,2,3,4} - \frac{\chi_{4}}{V}[\delta_{1,2,3} + \delta_{1,2,4} + \delta_{1,3,4} + \delta_{2,3,4}] - \frac{(\chi_{3})^{2}}{\chi_{2}V}[\delta_{1,2}\delta_{3,4} + \delta_{1,3}\delta_{2,4} + \delta_{1,4}\delta_{2,3}] \\ \text{local correlation} \qquad + \frac{1}{V^{2}} \left[\chi_{4} + \frac{(\chi_{3})^{2}}{\chi_{2}}\right] [\delta_{1,2} + \delta_{1,3} + \delta_{1,4} + \delta_{2,3} + \delta_{2,4} + \delta_{3,4}] - \frac{3}{V^{3}} \left[\chi_{4} + \frac{(\chi_{3})^{2}}{\chi_{2}}\right] . \\ \text{balancing contributions} \end{split}$$

Integrating the correlator yields cumulant inside a subsystem of the canonical ensemble

$$\kappa_n[B_{V_s}] = \int_{\mathbf{r}_1 \in V_s} d\mathbf{r}_1 \dots \int_{\mathbf{r}_n \in V_s} d\mathbf{r}_n \, \mathcal{C}_n(\{\mathbf{r}_i\})$$

Momentum space: Fold with Maxwell-Boltzmann in LR frame and integrate out the coordinates

Fluctuations and beam energy scan

- 1. Dynamical model calculations of critical fluctuations
 - Fluctuating hydrodynamics (hydro+) and (non-equilibrium) evolution of fluctuations
 - Equation of state with a tunable critical point [P. Parotto et al, PRC 101, 034901 (2020); J. Karthein et al., EPJ Plus 136, 621 (2021)]
 - Generalized Cooper-Frye particlization [M. Pradeep, et al., PRD 106, 036017 (2022); PRL 130, 162301 (2023)]

Alternatives at high μ_B : hadronic transport/molecular dynamics with a critical point [A. Sorensen, V. Koch, PRC 104, 034904 (2021); V. Kuznietsov et al., PRC 105, 044903 (2022)]

2. Deviations from precision calculations of non-critical fluctuations

- Non-critical baseline is not flat [Braun-Munzinger et al., NPA 1008, 122141 (2021)]
- Include essential non-critical contributions to (net-)proton number cumulants
- Exact baryon conservation + hadronic interactions (hard core repulsion)
- Based on realistic hydrodynamic simulations tuned to bulk data [VV, C. Shen, V. Koch, Phys. Rev. C 105, 014904 (2022)]

Calculation of non-critical contributions at RHIC-BES

VV, V. Koch, C. Shen, Phys. Rev. C 105, 014904 (2022)

- (3+1)-D viscous hydrodynamics evolution (MUSIC-3.0)
 - Collision geometry-based 3D initial state [Shen, Alzhrani, PRC 102, 014909 (2020)]
 - Crossover equation of state based on lattice QCD [Monnai, Schenke, Shen, Phys. Rev. C 100, 024907 (2019)]
 - Cooper-Frye particlization at $\epsilon_{sw} = 0.26 \text{ GeV}/\text{fm}^3$
- Non-critical contributions are computed at particlization
 - QCD-like baryon number distribution (χ_n^B) via **excluded volume** b = 1 fm³ [VV, V. Koch, Phys. Rev. C 103, 044903 (2021)]
 - **Exact global baryon conservation*** (and other charges)
 - Subensemble acceptance method 2.0 (analytic) [VV, Phys. Rev. C 105, 014903 (2022)]
 - or FIST sampler (Monte Carlo) [VV, Phys. Rev. C 106, 064906 (2022)] https://github.com/vlvovch/fist-sampler
- Absent: critical point, local conservation, initial-state/volume fluctuations, hadronic phase

*If baryon conservation is the only effect (no other correlations), non-critical baseline can be computed without hydro Braun-Munzinger, Friman, Redlich, Rustamov, Stachel, NPA 1008, 122141 (2021)

RHIC-BES-I: Net proton cumulant ratios (MUSIC)

VV, V. Koch, C. Shen, Phys. Rev. C 105, 014904 (2022)

- Data at $\sqrt{s_{NN}} \ge 20$ GeV consistent with non-critical physics (BQS conservation and repulsion)
- Effect from baryon conservation is stronger than repulsion but both are required at $\sqrt{s_{NN}} \ge 20$ GeV
- Deviations from baseline at lower energies?

Hints from RHIC-BES-I

VV, V. Koch, C. Shen, Phys. Rev. C 105, 014904 (2022)

Subtracting the hydrodynamic non-critical baseline

Proton cumulants from RHIC-BES-II

Net-proton cumulant ratios

- No smoking gun signature for CP in ordinary cumulants
- More structure seen in factorial cumulants

Conclusion 1:

Ordinary cumulants

Factorial cumulants

Factorial cumulants \hat{C}_n vs ordinary cumulants C_n

Factorial cumulants: ~irreducible n-particle correlations

$$\begin{split} \hat{C}_n \sim \langle N(N-1)(N-2) \dots \rangle_c & C_n \sim \langle \delta N^n \rangle_c \\ \hat{C}_1 &= C_1 & C_1 = \hat{C}_1 \\ \hat{C}_2 &= C_2 - C_1 & C_2 = \hat{C}_2 + \hat{C}_1 \\ \hat{C}_3 &= C_3 - 3C_2 + 2C_1 & C_3 = \hat{C}_3 + 3\hat{C}_2 + \hat{C}_1 \\ \hat{C}_4 &= C_4 - 6C_3 + 11C_2 - 6C_1 & C_4 = \hat{C}_4 + 6\hat{C}_3 + 7\hat{C}_2 + \hat{C}_1 \end{split}$$

[Bzdak, Koch, Strodthoff, PRC 95, 054906 (2017); Kitazawa, Luo, PRC 96, 024910 (2017); C. Pruneau, PRC 100, 034905 (2019)]

Factorial cumulants and different effects

- Baryon conservation [Bzdak, Koch, Skokov, EPJC '17]
- Excluded volume [VV et al, PLB '17]
- Volume fluctuations [Holzman et al., arXiv:2403.03598]
- Critical point [Ling, Stephanov, PRC '16]

- $\hat{C}_n^{\mathrm{cons}} \propto (\hat{C}_1)^n / \langle N_{\mathrm{tot}}
 angle^{n-1}$ small $\hat{C}_n^{\sf EV} \propto b^n$ small
- proton vs baryon $\hat{C}_n^B \sim 2^n \times \hat{C}_n^p$ same sign! [Kitazawa, Asakawa, PRC '12]

Ordinary cumulants: mix corrs. of different orders

- $\hat{C}_{n}^{CF} \sim (\hat{C}_{1})^{n} \kappa_{n}[V]$ depends on volume cumulants
- $\hat{C}_2^{CP} \sim \xi^2$, $\hat{C}_3^{CP} \sim \xi^{4.5}$, $\hat{C}_4^{CP} \sim \xi^7$ large

Factorial cumulants from RHIC-BES-II

From M. Stephanov, SQM2024 & arXiv:2410.02861

Bzdak et al review 1906.00936

Expected signatures: bump in ω_2 and ω_3 , dip then bump in ω_4 for CP at $\mu_B > 420$ MeV

Factorial cumulants from RHIC-BES-II

From M. Stephanov, SQM2024 & arXiv:2410.02861

baseline (hydro EV):

VV, V. Koch, C. Shen, PRC 105, 014904 (2022)

Bzdak et al review 1906.00936

Expected signatures: bump in ω_2 and ω_3 , dip then bump in ω_4 for CP at $\mu_B > 420$ MeV

Factorial cumulants from RHIC-BES-II

From M. Stephanov, SQM2024 & arXiv:2410.02861

baseline (hydro EV):

VV, V. Koch, C. Shen, PRC 105, 014904 (2022)

- describes right side of the peak in \hat{C}_3 •
- signal relative to baseline:
 - positive $\hat{C}_2 > 0$
 - negative $\hat{C}_3 < 0$

Conclusion 2:

Controlling the non-critical baseline is essential

Bzdak et al review 1906.00936

Expected signatures: bump in ω_2 and ω_3 , dip then bump in ω_4 for CP at $\mu_B > 420$ MeV

Factorial cumulants in 3D-Ising model

Adapted from Bzdak, Koch, Strodthoff, PRC 95, 054906 (2017)

 $\omega_n = \hat{C}_n / \hat{C}_1$

Factorial cumulants from RHIC-BES-II and CP

Exclusion plots

How it may look like in $T - \mu_B$ plane

VV, Anchishkin, Gorenstein, Poberezhnyuk, PRC 92, 054901 (2015)

Freeze-out of fluctuations on the QGP side of the crossover?

Factorial cumulants from RHIC-BES-II and CP

How it may look like in $T - \mu_B$ plane

Mukherjee, Venugopalan, Yin, PRC 92, 034912 (2015)

Freeze-out of fluctuations on the QGP side of the crossover?

Interplay with nuclear liquid-gas transition

VV, Gorenstein, Stoecker, Phys. Rev. Lett. 118, 182301 (2017)

Interplay with nuclear liquid-gas transition

Scaled factorial cumulants, long-range correlations, and the antiproton puzzle

Acceptance dependence and long-range correlations

A. Bzdak, V. Koch, VV, in preparation

Two-component model: produced ($p\bar{p}$ pairs) and stopped protons come from two independent fireballs

0.01 7.7 GeV 11.5 GeV 14.5 GeV 19.6 GeV 0.00 |y| < 0.5, 0.4 < p_⊤ < 2.0 GeV/*c*, Au-Au 0-5% -0.01 0.04 proton - antiproton, $c_{2}^{p}-c_{2}^{\overline{p}}$ -0.02 STAR Au-Au 0-5%, PRC 104, 024902 (2021) _-0.03 ; hvdro (CE + EV), PRC 105, 014904 (2022) 0.04 0.0-50 Two-component model ∥ -0.05 $\mathbf{c}_{2}^{\mathsf{p}}-\mathbf{c}_{2}^{\overline{\mathsf{p}}}$ Couplings c 2000 9000 0000 two fireballs 0.02 54.4 GeV 200 GeV 39 GeV 62.4 GeV -0.005 0.00 **single fireball** 100 200 5 10 20 50 0.0 0.0 0.0 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 $\sqrt{s_{NN}}$ [GeV] Rapidity cut ymax Rapidity cut ymax Rapidity cut ymax Rapidity cut ymax

Data lie in-between single and two-fireball models

Opportunities for BES-II:

- Further tests of the splitting between protons and antiprotons in 2^{nd} order cumulants with extended y coverage
- Critical point signal expected to break the scaling = const. A. Bzdak, V. Koch, VV, in preparation

Summary

- Locating the QCD critical point from first-principles
 - New method based on contours of constant entropy places QCD CP at $T_c = 114.3 \pm 6.9$ MeV, $\mu_B = 602.1 \pm 62.1$ MeV
- Proton cumulants are uniquely sensitive to the CP but challenging to model dynamically, factorial cumulants are advantageous
- BES-II data is in
 - Consistent with predictions from non-critical physics $@\sqrt{s_{NN}} \ge 20$ GeV
 - Shows (non-monotonic) structure in factorial cumulants
 - Positive \hat{C}_2 and negative \hat{C}_3 after subtracting non-critical baseline at $\sqrt{s_{NN}} < 10~{\rm GeV}$

Outlook:

- Improving first-principles constraints on CP location
- Improved description of non-critical baselines and quantitative predictions of critical fluctuations
- Acceptance dependence of factorial cumulants, understanding antiprotons

Thanks for your attention!

