

Volodymyr Vovchenko (University of Houston)

2023 MUSES Collaboration Meeting, UIUC

May 17, 2023

Hadron resonance gas (HRG)

HRG: Equation of state of hadronic matter as a multi-component (non-)interacting gas of known hadrons, resonances, and light nuclei

$$\ln Z \approx \sum_{i \in M, B} \ln Z_i^{id} = \sum_{i \in M, B} \frac{d_i V}{2\pi^2} \int_0^\infty \pm p^2 dp \ln \left[1 \pm \exp\left(\frac{\mu_i - E_i}{T}\right) \right]$$

Grand-canonical ensemble: $\mu_i = b_i \mu_B + q_i \mu_O + s_i \mu_S$ *chemical equilibrium*

HRG model applications

- Heavy-ion collisions
 - Hadrochemistry (chemical freeze-out)
 - Fluctuations of conserved charges
- Lattice QCD context
 - Understanding the degrees of freedom
 - Equation of state, susceptibilities, partial pressures
- Early universe
 - Modeling QCD contribution to cosmic EoS
 - Finite isospin density
- Neutron-star matter
 - Extending to include non-resonant interactions
 - Hadronic part of the CMF model

Natural block for MUSES

Fujimoto et al., 2109.06799

What is Thermal-FIST?

Thermal-FIST* (current version: v1.4.2) [VV, H. Stoecker]

Open-source C++ package for general-purpose HRG model analysis Cross-platform (Linux, Mac, Windows) through **cmake**

License: GPL-3.0

GitHub: https://github.com/vlvovch/Thermal-FIST

physics manual: Comput. Phys. Commun. 244, 295 (2019)

- 2014-2018: Initial development and applications (closed source)
- June 2018: First public release (v0.6)
- Jan 2019: Code documentation and CPC article release (v1.0)
- 2019-2022: Incremental upgrades
- Soon(?): Version 1.5 with new features (dense matter EoS, cosmology)

HRG model aspects in Thermal-FIST

- Equation of state and related properties
 - thermodynamics, hadron yields and fluctuations
- Extensions of the base HRG model
 - finite resonance widths
 - repulsive (excluded volume) and van der Waals interactions (criticality)
 - (non-)conserved charges fluctuations and correlations
 - partial chemical equilibrium
- Heavy-ion applications
 - thermal fits
 - small systems and canonical effects
 - Monte Carlo event generator
 - partial chemical equilibrium
 - light nuclei
- Other applications
 - Neutron star matter
 - Early universe (cosmic EoS)

Thermal-FIST structure

- Core library (libThermalFIST)
 - Ideal (base) HRG model (HRGBase)
 - Interacting HRG model (HRGEV/HRGVDW)
 - Partial chemical equilibrium (HRGPCE)
 - Monte Carlo mode (HRGEventGenerator)
 - Thermal fits (HRGThermalFit)
- Graphical user interface (QtThermalFIST)
 - Based on Qt5
 - Wrapper around libThermalFIST
- Sample console applications
 - Essentially just C++ macros linking to libThermalFIST

External dependencies:

- Eigen library for linear algebra (header-only, built-in)
- Minuit2 (built-in, i.e. ROOT not needed)
- Qt5 (for GUI only)

Using Thermal-FIST

Installation using git and cmake

```
# Clone the repository from GitHub
git clone https://github.com/vlvovch/Thermal-FIST.git
cd Thermal-FIST
# Create a build directory, configure the project with cmake
# and build with make
mkdir build
cd build
cmake ../
make
# Run the GUI frontend
./bin/QtThermalFIST
# Run the test calculations from the paper
./bin/examples/cpc1HRGTDep
./bin/examples/cpc2chi2
./bin/examples/cpc3chi2NEQ
./bin/examples/cpc4mcHRG
```

Using Thermal-FIST: Console mode

```
#include "HRGBase.h"
#include "HRGEV.h"
#include "HRGFit.h"
#include "HRGVDW.h"
#include "ThermalFISTConfig.h"
using namespace std;
#ifdef ThermalFIST USENAMESPACE
using namespace thermalfist;
#endif
 / Temperature dependence of HRG thermodynamics at \mu = 0
  Three variants of the HRG model:
 / 1. Ideal HRG: <config> = 0
 / 2. EV–HRG with constant radius parameter r = 0.3 fm for all hadrons (as in 1412.5478): <config> = 1
 / 3. QvdW-HRG with a and b for baryons only, fixed to nuclear ground state (as in 1609.03975): <config> = 2
  Usage: cpc1HRGTDep <config>
int main(int argc, char *argv[])
 // Particle list file
  // Here we will use the list from THERMUS-2.3, for comparing the results with THERMUS-2.3
 string listname = string(ThermalFIST_INPUT_FOLDER) + "/list/thermus23/list.dat";
 // Alternative: use the default PDG2014 list
 //string listname = string(ThermalFIST INPUT FOLDER) + "/list/PDG2014/list.dat";
 // Create the hadron list instance and read the list from file
 ThermalParticleSystem TPS(listname);
 // Which variant of the HRG model to use
  int config = 0;
```

```
if (config == 0) // Ideal HRG
  model = new ThermalModelIdeal(&TPS);
 printf("#Calculating thermodynamics at \\mu = 0 in Id-HRG model\n");
  modeltype = "Id-HRG";
else if (config == 1) // EV-HRG, r = 0.3 fm, to reproduce 1412.5478
  model = new ThermalModelEVDiagonal(&TPS);
  double rad = 0.3:
  for (int i = 0; i < model->TPS()->ComponentsNumber(); ++i)
   model->SetRadius(i, rad);
 printf("#Calculating thermodynamics at \mu = 0 in EV-HRG model with r = f(n), rad);
  modeltype = "EV-HRG";
else if (config == 2) // QvdW-HRG, to reproduce 1609.03975
 model = new ThermalModelVDWFull(&TPS):
 // vdW parameters, for baryon-baryon, antibaryon-antibaryon ONLY, otherwise zero
 double a = 0.329; // In GeV*fm3
  double b = 3.42; // In fm3
```

Link to **libThermalFIST** and write a C++ macro doing whatever calculation you want

The most flexible way of using the code

git submodule is useful

MUSES use case: write a wrapper for **libThermalFIST**?

Using Thermal-FIST: Jupyter notebooks

Interactive notebooks through Jupyter (xeus kernel and ROOT-cling)*

^{*}Since version 1.2.1, example at github.com/vlvovch/FIST-jupyter

Using Thermal-FIST: GUI

Graphical user interface for general-purpose HRG model applications

Thermal-FIST and HRG model equation of state

- Base calculation is at fixed T & $\mu_{B,Q,S}$ (alternatively at fixed s/n_B, Q/B, S/|S|)
- Thermodynamic functions, hadron abundances, feeddown, correlations and fluctuations

Thermal-FIST and Thermal-FITS

- Extract chemical freeze-out parameters from heavy-ion hadron abundances
- χ^2 minimization

Thermal-FIST and equation of state

- Compute HRG model quantities along a fixed T, $\mu_{\rm B}$, or $\mu_{\rm B}/T$
- Impose conservation laws [e.g. strangeness neutrality (heavy-ions) or charge neutrality (neutron stars)]

Thermal-FIST and equation of state

Console mode provides more flexibility

Figure from R.V. Poberezhnyuk et al., PRC 99, 024907 (2019)

Thermal-FIST and HRG event generator

- Monte Carlo sampling of hadron abundances, momenta, and coordinates
- Superimposed on blast-wave flow velocity profile
- Realistic modeling of acceptance effects, especially for correlations and fluctuations

Thermal-FIST in THERMUS mode: cross-check

THERMUS* is an early open-source implementation of some HRG model features

[S. Wheaton, J. Cleymans, B. Hippolyte, et al.]

Use exactly the same input (particle list, finite widths, and excluded volume parameters) and compare

Thermal-FIST in THERMUS mode: cross-check

THERMUS* is an early open-source implementation of some HRG model features

[S. Wheaton, J. Cleymans, B. Hippolyte, et al.]

Use exactly the same input (particle list, finite widths, and excluded volume parameters) and compare

FIST: Fist IS Thermus

Rigorous unit testing still to be implemented

Interactions in HRG

Interacting HRG can be more smoothly connected to other QCD phases than ideal HRG

e.g. the crossover in T direction, Albright, Kapusta, Young, PRC (2014)

Thermal-FIST incorporates van der Waals interactions in the most general form

$$p(T, n_1, \dots, n_h) = \sum_i \frac{T n_i}{1 - \sum_j \tilde{b}_{ji} n_j} - \sum_{i,j} a_{ij} n_i n_j$$

- Separate excluded volume b_{ii} for each pair i,j of species
- Separate mean field a_{ii} for each pair i,j of species
- So far very little explored!
- E.g. indications for flavor-dependent parameters from
 - Lattice QCD susceptibilities [Karthein et al., 2107.00588]
 - Symmetry energy
 - Neutron-star matter EoS [Fujimoto et al., 2109.06799]

VV, Motornenko, Alba, et al., 1707.09215

Interactions in HRG: Beyond van der Waals

Standard van der Waals gives too stiff EoS beyond the saturation density

Beyond vdW:

- Generalized (non-linear) excluded volume
 - Carnahan-Starling (CS)
- Density-dependent mean-field
 - Real gases
 - Skyrme
 - VDF model

A. Sorensen, V. Koch, PRC 104, 034904 (2021)

Helps soften the EoS in the cold & dense regime, making it easier to match with others

Available out-of-the-box in FIST in next version (already present in **devel** branch on github), adding leptons into the list one can do neutron-star matter

Another extension: pion interactions and condensation at finite isospin density

VV et al., PRL (2021)

Fujimoto et al., 2109.06799

Thermal-FIST & MUSES: Summary

- Thermal-FIST is an open-source implementation of the HRG model equation of state with many knobs
 - Particle lists, interaction parameters, and other settings easily customizable
 - Provides EoS properties (averages as well as susceptibilities) at given T & $\mu_{B,Q,S}$
 - Works both under heavy-ion and neutron star regimes
- Standalone C++ implementation with minimal external dependencies
 - Only the base library **libThermalFIST** really needed to be built and linked against
 - Integration into MUSES with a wrapper?
- Interaction parameters still need to be constrained

Thanks for your attention!