

# **Quarkyonic or Baryquark matter?**

### On the dynamical generation of momentum space shell structure

### Volodymyr Vovchenko (University of Houston)

Nuclear Theory Seminar at Iowa State University

#### May 11, 2022

Based on

V. Koch, VV, <u>arXiv:2211.14674</u>, Phys. Lett. B 841, 137942 (2023) R. Poberezhnyuk, VV, in preparation



## **Structure of matter**







## **Structure of matter**







# **Strongly interacting matter**

- Theory of strong interactions: Quantum Chromodynamics (QCD)
  - $\mathcal{L} = \sum_{q=u,d,s,...} \bar{q} \left[ i \gamma^{\mu} (\partial_{\mu} i g A^{a}_{\mu} \lambda_{a}) m_{q} 
    ight] q rac{1}{4} G^{a}_{\mu
    u} G^{\mu
    u}_{a}$
- Basic degrees of freedom: quarks and gluons that carry color charge
- At smaller energies confined into baryons (qqq) and mesons  $(q\bar{q})$

### Scales

- Length: 1 femtometer =  $10^{-15}$  m
- Temperature: 100 MeV $/k_B = 10^{12}$  K

### Where is it relevant?

- Early Universe
- Laboratory: heavy-ion collisions
- Astrophysics: Neutron star (mergers)











## **QCD** matter under extreme conditions



Regulate temperature (heating) and/or baryon density (compression)  $\rightarrow$  QCD phase diagram



$$Z = \mathsf{Tr}(e^{-(\hat{H}-\mu\hat{N})/T})$$

Figure from P. Senger, N. Herrman, Nucl. Phys. News

- Hadrons at low densities (confinement), quarks at high densities (asymptotic freedom)
- What is the nature of hadron-quark transition and/or coexistence?
  - The question is inherently non-perturbative

## **Non-perturbative methods**



**First-principle tool: Lattice QCD** 

#### Ab-initio calculation of hadron masses





BMW Collaboration, Science 322, 1224 (2008)

Remarkable agreement of QCD with the experiment

# **QCD** transition at $\mu_B = 0$ from lattice **QCD**





- Analytic crossover at vanishing net baryon density at  $k_B T_{pc} \approx 155$  MeV a first-principle result ٠
- [Y. Aoki et al., Nature 443, 675 (2006)] Smooth connection between hadrons and quarks – quark-hadron duality? ٠
  - On the hadronic size realized by adding resonances (HRG model) and eigenvolumes •
  - Quark side (hard-thermal loop) perturbation theory ٠

[M. Albright, J. Kapusta, C. Young, Phys. Rev. C 90, 024915 (2014)]

# **QCD** transition at finite $\mu_B$

Finite baryon densities inaccessible with lattice QCD due to the sign problem

Extrapolations from  $\mu_B = 0$ :

- Crossover at  $T_{pc} \approx 155$  MeV maintained till  $\frac{\mu_B}{T} < 2 3$ 
  - No evidence for critical point
  - Consistent with heavy-ion data on proton number fluctuations





Figure from P. Senger, N. Herrman, Nucl. Phys. News

Ultimate limit: zero temperature,  $T = 0 \ (\mu_B/T \rightarrow \infty)$ 

- No thermal excitations (resonances less relevant)
- Pauli blocking between "deconfined" and confined (baryons) quarks
- Accessible in neutron stars
- Perturbative QCD: high densities only,  $n_B > 40n_0$

+ multi-messenger constraints (neutron star mergers, nuclear physics, heavy-ion coll.)

## **QCD** transition at zero temperature and neutron stars

- QCD matter at zero temperature is found in interior of neutron stars
- Its pressure balances the gravitational pull





# QCD EoS in the cold and dense regime from neutron stars



Many constraints from neutron star observations indicate a strong rise of  $c_s^2$  beyond the conformal limit

Tews, Carlson, Gandolfi, Reddy, ApJ 860 (2018) 149; Fujimoto, Fukushima, PRD 101 (2020) 054016; Tang, Norohna-Hostler, Yunes, PRL 125 (2020) 261104; Altiparmak, Ecker, Rezzolla, ApJL 939 (2022) L34;

....



We have neutron-star matter EoS based on astrophysical observations

- Consistent with nuclear physics at low densities (neutrons)
- Perturbative QCD at high densities (quarks)
- Does not elucidate the state of matter in-between



Figure from Altiparmak, Ecker, Rezzolla, ApJL (2022)

## QCD the cold and dense regime and quarkyonic matter

We have neutron-star matter EoS based on astrophysical observations

- Consistent with nuclear physics at low densities (neutrons)
- Perturbative QCD at high densities (quarks)
- Does not elucidate the state of matter in-between



**Quarkyonic matter:** baryon-quark coexistence, baryonic excitations around the Fermi surface McLerran, Pisarski, NPA 796, 83 (2007)

## **Quarkyonic matter and neutron stars**

First(?) practical realization of quarkyonic matter (T=0) [McLerran, Reddy, PRL 122, 122701 (2019)]

Mixture of "confined" quarks (baryons) and deconfined quarks with Pauli principle\*

Enforce *momentum space shell structure* (baryonic Fermi surface) and its density evolution

 $\Delta = \frac{\Lambda^3}{k_{\rm FB}^2} + \kappa \frac{\Lambda}{N_c^2} \qquad m_N = N_c m_Q$ 

 $+ 2 \times N_c \int_0^{k_{\rm FQ}} \frac{d^3k}{(2\pi)^3} \sqrt{k^2 + M_q^2}$ 









# Dynamical generation of momentum space shell structure



#### PHYSICAL REVIEW C 101, 035201 (2020)

#### Dynamically generated momentum space shell structure of quarkyonic matter via an excluded volume model

Kie Sang Jeong<sup>1,2</sup> Larry McLerran,<sup>2</sup> and Srimoyee Sen<sup>2</sup> <sup>1</sup>Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk 37673, Republic of Korea <sup>2</sup>Institute for Nuclear Theory, University of Washington, Seattle, Washington 98195, USA

#### AN EXCLUDED VOLUME THEORY OF NUCLEAR INTERACTIONS

$$n_{ex}^N = \frac{n_N^N}{1 - n_N^N/n_0}$$

Minimize energy density at fixed  $n_B$  to find  $k_F$  and  $\Delta$ 

$$\tilde{\epsilon} = 4\left(1 - \frac{n_N^N}{n_0}\right) \int_{k_F}^{k_F + \Delta} \frac{d^3k}{(2\pi)^3} \left( (N_c m_Q)^2 + k^2 \right)^{\frac{1}{2}} + \frac{2Nc}{\pi^2} \int_0^{k_F/N_c} dkk \left(\Lambda^2 + k^2\right)^{\frac{1}{2}} \left(m_Q^2 + k^2\right)^{\frac{1}{2}}$$

Requires infrared regulator to avoid superluminal speed of sound

Works reasonably well for neutron stars, extendable to strange quarks D. Duarte, S. Hernandez-Ortiz, K. Jeong, PRC 102 (2020) 025203; PRC 102 (2020) 065202 S. Sen, L. Sivertsen, ApJ 915, 109 (2021)





Issues

The excluded volume mechanism applied to baryon-quark mixture

- Helps to explain how quarks appear with baryon density
  - When baryon cores start to overlap, it becomes energetically unfavorable to have nucleons only
- Does not explain why quarks are in the Fermi sea and baryons are on the Fermi surface
- Requires infrared regulator
  - Hard to constrain its value independently
  - Quarks appear at low densities

**Key question:** Is quarkyonic matter momentum shell structure the energetically preferred state of dense QCD matter? Will it emerge in a true dynamical mechanism (e.g. transport simulations)?



addressed in S. Sen, L. Sivertsen, ApJ 915, 109 (2021)



 $n_B/\rho_0$ 



## Quarkyonic vs baryquark matter



Two opposite scenarios for the realization of Pauli exclusion principle in baryon-quark mixture



V. Koch, VV, Phys. Lett. B 841, 137942 (2023)

$$f_{\rm ev} = (1 - n_N/n_0)$$
 14

UNIVERSITY OF HOUSTON

At each baryon density  $n_B$  minimize energy density wrt to quark fraction  $n_Q/n_B$ 



- Without excluded volume, the pure nucleon phase is always preferred
  - Already in this limit evident that adding quarks to the surface is energetically favorable
- With hard-core repulsion minimum may be at finite  $n_Q/n_{B_1}$  baryquark has a deeper minimum V. Koch, VV, Phys. Lett. B 841, 137942 (2023)

# Quarkyonic vs baryquark matter: momentum shell structure



- Non-zero quark fraction emerges at a certain density as a result of energy minimization
  - Both scenarios give the same EoS (pure nucleon matter) before the quark onset
  - Appearance of quarks in baryquark matter is earlier and smoother

# Quarkyonic vs baryquark matter: equation of state





- For most parameter setups the quark onset corresponds to a 2<sup>nd</sup>-order phase transition
- "Early" appearance of quarks
  - In baryquark matter likely an <u>artifact</u> of missing nucleon attraction,  $\varepsilon_N \rightarrow \varepsilon_N - an_N^2$
  - In quarkyonic matter appears due to infrared regulator
- Infrared regulator does not make quarkyonic energetically favored over baryquark

# Quarkyonic vs baryquark: speed of sound, conformality



- In quarkyonic matter need to introduce regulator to obtain physically acceptance speed of sound
- In baryquark matter the behavior is acceptable without the need to introduce regulators
- The speed of sound exceeds the conformal limit  $(c_s^2 = 1/3)$  in all cases
- Trace anomaly: exceeding the conformal limit  $(\varepsilon = 3p)$  is less obvious

#### V. Koch, VV, Phys. Lett. B 841, 137942 (2023)

## **Outlook:** Realistic low-density equation of state

Achieved by matching with quantum real gas model

- Generalized excluded-volume model
- Attractive mean-field





R. Poberezhnyuk, VV, to appear

UNIVERSITY OF

#### Isospin-symmetric matter:

- same # of protons (uud) and neutrons (udd)
- Fermi surfaces of u & d quarks coincide

#### Pure neutron matter:

- Neutrons (udd) only  $\rightarrow$  nud-matter
- charge neutrality  $(n_u=2n_d)$
- different Fermi surfaces for u & d quarks







# **Summary**



- Quark-hadron coexistence at T = 0 implies a mixed phase in the momentum space
- Equation of state of baryon-quark mixture with Pauli principle and baryonic hard-core
  - Disfavors quarkyonic matter (baryonic Fermi surface) compared to baryquark (quark Fermi surface)
  - Qualitatively similar resulting EoS but baryquark does not require infrared regulator
- Existing quarkyonic matter descriptions require modifications if this picture is to be preserved
  - Momentum-dependence nuclear interactions?
  - Abandon the quasiparticle picture? (too naïve)
  - A judicious regulator?
- Outlook: [R. Poberezhnyuk, VV, to appear]
  - Match to realistic low-density EoS
  - Variations on Pauli exclusion principle and quark-hadron duality implementations
  - Isospin asymmetry and neutron stars

# Thanks for your attention!