Cooper-Frye sampling with short-range repulsion

Volodymyr Vovchenko (University of Houston)

6th Joint Meeting of the APS Division of Nuclear Physics and the Physical Society of Japan

Hilton Waikoloa Village, HI, USA

November 30, 2023

Reference: VV, Phys. Rev. C 106, 0640906 (2022)

QCD phase structure and heavy-ion collisions

- Scanning the QCD phase diagram with heavy-ion collisions at different energies
- Event-by-event fluctuations probe the QCD phase structure, in particular the critical point
- Effects like baryon conservation are essential and make even non-critical baseline non-trivial

Heavy-ion collisions and particlization

MADAI Collaboration

Anchishkin, VV, Csernai, PRC '13

Particlization: Mapping the expanding hydrodynamic fluid into hadron resonance gas on a Cooper-Frye hypersurface (typically constant energy density surface)

$$\omega_p \frac{dN_j}{d^3 p} = \int_{\Sigma(x)} d\Sigma_\mu(x) \, p^\mu \, f_j[u^\mu(x)p_\mu; T(x), \mu_j(x)],$$

What is the fate of event-by-event fluctuations?

Existing particlization techniques

- Standard Cooper-Frye (grand-canonical) particlization
 - Examples: iSS, frzout, BEST sampler, ... [C. Shen et al.; J. Bernhard; S. Pratt,...]
 - Conservation laws are enforced on average + viscous corrections
 - Ok for spectra and flow
 - Each hydrodynamic cell is sampled independently
 - Hadron number fluctuations follow Poisson statistics
 - Not very suitable for event-by-event fluctuations
- (Micro)canonical particlization [Oliinychenko, Koch, PRL 123, 182302 (2019); Schwartz et al., JPG 45, 015001 (2018)]
 - Exact conservation of conserved charges, energy and momentum
 - No hadronic interactions
- **FIST** sampler VV, Phys. Rev. C 106, 064906 (2022) <u>https://github.com/vlvovch/fist-sampler</u>
 - Exact conservation of baryon number, electric charge, and strangeness
 - Hard-core repulsion

As well as analytical approaches to critical [Pradeep, Stephanov, PRL '23] and non-critical [VV, V. Koch, C. Shen, PRC '22] fluctuations 4

Hard-core repulsion

• Box setup reproduces the fluctuations in **excluded volume model** $(V \rightarrow V - bN$ with $b = \frac{16\pi r_c^3}{3}$)

*For Cooper-Frye hypersurface, $|\mathbf{r_i} - \mathbf{r_i}|$ is calculated as the equal-time distance in the center-of-mass frame

Full algorithm

- 1. Sample the total number of each hadron species from Poisson distribution based on Cooper-Frye integral
- 2. Optionally enforce canonical treatment of global conservation laws via rejection sampling
- 3. Sample coordinates and momenta of hadrons one-by-one
 - Choose hydro cell from multinomial distribution
 - Momentum from thermal distribution + Lorenz boost
- 4. Reject the configuration if any two hadrons with hard-core repulsion overlap

Inputs

- List of hadrons and hard-core radii σ_{ij} for each pair of hadron species
 - $b \sim 1 \text{ fm}^3$ in baryon-baryon interaction is motivated by lattice QCD [Karthein, Koch, Ratti, VV, PRD 104, 094009 (2021)]
- Cooper-Frye hypersurface: numerical from hydro (e.g. MUSIC) or parameterized blast-wave

FIST sampler: Implementation

Implementation: available in Thermal-FIST out-of-the box since version 1.4 open source: https://github.com/vlvovch/Thermal-FIST

rticle list file: /Users/Vvovch/Code/Thermal-FIST-Extended/Thermal-FIST/Input/list/PDG2020/list-withnuclei.dat + decays.dat											Load particle list Load de	acays
							Thermal model	Thermal fits	Equation of state	Event genera	tor Particle list editor	
											HRG model configuration:	
Pa	rtic	le list:					Edit particle list for analysis					
		Name	PDG ID	m [GeV]	Multiplicity	Variance	Scaled variance	Skewness	Kurtosis	<pt> [G</pt>	Model: Excluded volume (X-terms) 😋 Ensemble: Canonical	
1		pi0	111	0.134977	11.231 ± 0.028	11.295 ± 0.140	1.006 ± 0.012	1.198 ± 0.122	2.196 ± 1.208	0.581 ± 0	Statistics: Boltzmann Quantum for All particles 🚱 🛛 Use quadratures	
-		pi+	211	0.13957	10.960 ± 0.024	8.110 ± 0.096	0.740 ± 0.009	0.554 ± 0.093	-0.048 ± 0.698	0.584 ± 0		
3		pi-	-211	0.13957	10.963 ± 0.024	8.170 ± 0.096	0.745 ± 0.009	0.483 ± 0.092	-0.170 ± 0.672	0.585 ± 0	Resonance widths: Zero-width	
4		K+	321	0.493677	3.154 ± 0.014	2.679 ± 0.032	0.849 ± 0.010	0.679 ± 0.061	0.174 ± 0.360	0.771 ± 0		
6		к-	-321	0.493677	3.137 ± 0.014	2.667 ± 0.033	0.850 ± 0.011	0.739 ± 0.063	0.641 ± 0.327	0.780 ± C	Conservation laws EV/vdW interactions PCE/Saha/Other	
e		anti-K0	-311	0.497611	3.109 ± 0.014	2.758 ± 0.035	0.887 ± 0.011	0.844 ± 0.068	0.872 ± 0.408	0.783 ± 0		
7		к0	311	0.497611	3.106 ± 0.014	2.651 ± 0.032	0.854 ± 0.010	0.669 ± 0.056	0.135 ± 0.260	0.779 ± 0	Chemical freeze-out parameters:	
ε		anti-p	-2212	0.938272	0.686 ± 0.007	0.641 ± 0.010	0.935 ± 0.014	0.889 ± 0.048	0.772 ± 0.183	1.056 ± 0	T _{ch} (MeV): 155.00 🗘 y ₄ : 1.0000 🗘 y ₅ : 1.0000 🗘	
g		p	2212	0.938272	0.688 ± 0.007	0.654 ± 0.010	0.951 ± 0.015	0.925 ± 0.049	0.880 ± 0.186	1.051 ± 0	μ ₈ (MeV): 0.00	
1	0	n	2112	0.939565	0.674 ± 0.007	0.635 ± 0.010	0.943 ± 0.014	0.909 ± 0.045	0.790 ± 0.149	1.055 ± 0	R (fm): 40000 🗘 R _{SC} (fm): 4.0000 🗘 V (fm³): 268.083	
1	1	anti-n	-2112	0.939565	0.696 ± 0.007	0.633 ± 0.009	0.909 ± 0.013	0.832 ± 0.042	0.590 ± 0.136	1.067 ± 0	B: 0 🗘 Q: 0 🗘 S: 0 🗘	
1	2	Lambda	3122	1.11568	0.269 ± 0.004	0.263 ± 0.005	0.976 ± 0.019	0.960 ± 0.045	0.902 ± 0.119	1.175 ± 0	Blast-wave momentum spectrum:	
1	3	anti-Lambda	-3122	1.11568	0.279 ± 0.004	0.270 ± 0.005	0.970 ± 0.018	0.943 ± 0.044	0.848 ± 0.121	1.171 ± 0	Spherically symmetric O Cylindrically symmetric Cracow model	
		Classe -	2000	1 40007	0.470 - 0.004		0.000 - 0.000	0.001 - 0.045	0.040 - 0.407	4 000 - 0	Two (MeV): 155.00 C Rr(fm): 9.000 C (8) -: 0.500 C n: 1.000 C n=	^
Distribution: dN/dy 🧿 Binning Perform decays												
											Events: 100000	
		3										
	e :	2.5			1						Stop	
1	ND '	1.5		Ĵ	<i>i</i>		1					
	(0.5									Effective event number = 13765 CE acceptance rate: 1	
		-4		-2		0 y	2		4		Per event = 0.729096 ms	

• Examples for use at LHC and RHIC: <u>https://github.com/vlvovch/fist-sampler</u>

Using the blast-wave model hypersurface (~20 million events)

Proton cumulants

Effects of hadronic afterburner UrQMD (mainly baryon annihilation) investigated in

[Savchuk et al., PLB 827, 136983 (2023)]

Proton-deuteron correlations

FIST sampler at **RHIC-BES**

Using the single-shot hydro hypersurfaces from MUSIC (sample several million events per energy)

- Validating earlier analytic calculations [VV, V. Koch, C. Shen, Phys. Rev. C 105, 014904 (2022)] within Monte Carlo event generator
- Baryon conservation + excluded volume describe the data above 20 GeV
- New element: Simultaneous effects of baryon, charge, strangeness, and excluded volume
 - Electric charge conservation becomes essential below 7.7 GeV

FIST sampler at **HADES**

Using Siemens-Rasmussen-Hubble fireball parameterization

VV, Phys. Rev. C 106, 064906 (2022)

- Strong effect of simultaneous baryon and electric charge conservation
- No description of HADES data

Summary and outlook

- FIST sampler is a fast Monte Carlo routine for Cooper-Frye particlization
 - Canonical treatment of conservation laws
 - Short-range hard-core repulsion among hadrons
 - Included in Thermal-FIST since v1.4 and available publicly
- Provides an **event generator** giving non-critical baseline for event-by-event fluctuations observables
- Outlook:
 - Effects of hadronic afterburner
 - Observables other than proton number cumulants
 - Viscous corrections

Thanks for your attention!