QCD phase structure at finite baryon density from heavy-ion collisions

Volodymyr Vovchenko (Berkeley Lab)

Juniors Day at STAR

February 14, 2022

Unterstützt von / Supported by

Alexander von Humboldt Stiftung/Foundation

Strongly interacting matter

• Theory of strong interactions: *Quantum Chromodynamics* (QCD)

$$\mathcal{L} = \sum_{q=u,d,s,...} \bar{q} \left[i \gamma^{\mu} (\partial_{\mu} - i g A^{a}_{\mu} \lambda_{a}) - m_{q}
ight] q - rac{1}{4} G^{a}_{\mu
u} G^{\mu
u}_{a}$$

- Basic degrees of freedom: quarks and gluons that carry color charge
- At smaller energies confined into baryons (qqq) and mesons $(q\bar{q})$

Scales

- Length: 1 femtometer = 10^{-15} m
- Temperature: 100 MeV $/k_B = 10^{12}$ K

Where is it relevant?

- Early Universe
- Astrophysics: Neutron star (mergers)

Studied in laboratory with heavy-ion collisions

Non-perturbative methods

First-principle tool: Lattice QCD

Ab-initio calculation of hadron masses

BMW Collaboration, Science 322, 1224 (2008)

Remarkable agreement of QCD with the experiment

QCD transition from lattice **QCD**

- Analytic crossover at vanishing net baryon density at $k_B T_{pc} \approx 155$ MeV a first-principle result [Y. Aoki et al., Nature 443, 675 (2006)]
- Finite densities inaccessible due to **sign problem**, but many effective theories predict first-order phase transition and the **QCD critical point**

First-principle constraints on the QCD critical point

Indirect lattice QCD methods offer glimpse into small μ_B/T

• Taylor expansion around $\mu_B/T=0$

$$\frac{p(T,\mu_B)}{T^4} = \frac{p(T,0)}{T^4} + \frac{\chi_2^B(T,0)}{2!}(\mu_B/T)^2 + \frac{\chi_4^B(T,0)}{4!}(\mu_B/T)^4 + \dots$$

No hints for the critical point at T > 135 MeV Critical point $\mu_B/T < 3$ disfavored

- Relativistic virial expansion in fugacities via analytic continuation from imaginary μ_B/T

$$\frac{p(T,\mu_B)}{T^4} = \sum_{k=0}^{\infty} p_k(T) \cosh\left(\frac{k\,\mu_B}{T}\right)$$

Expansion sees singularity in the complex plane, Im $[\mu_B/T] = \pi$ Critical point at $\mu_B/T < \pi$ disfavored

Critical point, if it exists, likely located beyond the reach of lattice methods

[HotQCD Collaboration, PRD 95, 054504 (2017)]

[V.V., Steinheimer, Philipsen, Stoecker, PRD 97, 114030 (2018)]

Relativistic heavy-ion collisions – "Little Bangs"

Control parameters

- Collision energy $\sqrt{s_{NN}} = 2.4 5020 \text{ GeV}$
- Size of the collision region

Measurements

• Final hadron abundances and momentum distributions

QCD phase diagram with heavy-ion collisions

STAR event display

Thousands of particles created in relativistic heavy-ion collisions

Apply concepts of statistical mechanics

Particle production in heavy-ion collisions

Ideal gas law (E. Clapeyron, 1834) $P_i V = N_i k_B T$

is the simplest model of particle production

$$N_i = \frac{d_i V}{2\pi^2} \int dk \ k^2 \left[1 \pm \exp\left(\frac{\sqrt{k^2 + m_i^2} - \mu_i}{T}\right) \right]^{-1}$$

Bose-Einstein & Fermi-Dirac, 1924-1926

© J. Cleymans

ALICE collaboration (Quark Matter 2018)

Hadron resonance gas (HRG) model

• **HRG model:** free gas of known hadrons and resonances

 $p(T, \mu_B) = T \phi_M(T) + 2 T \phi_B(T) \cosh(\mu_B/T)$ mesons $\phi_{M(B)}(T) = \sum_{i \in M(B)} \frac{d_i}{2\pi^2} \int dk \, k^2 \exp\left(-\frac{\sqrt{m_i^2 + k^2}}{T}\right)$

- Hadronic interactions dominated by resonance formation*
- Leading order in relativistic virial expansion
- Matches well with lattice QCD below T_{pc}
- Non-resonant interactions incorporated in extended descriptions

HRG model and heavy-ion collisions:

Basis for the thermal model of particle production

9

All bells and whistles implemented in open source codes, e.g. Thermal-FIST [VV, Stoecker, Comput. Phys. Commun. 244, 295 (2019)]

* Dashen, Ma, Bernstein, "S-matrix formulation of statistical mechanics", Phys. Rev. (1969); Prakash, Venugopalan, Nucl. Phys. A (1992)

Mapping heavy-ion collisions onto the QCD phase diagram

 $\sqrt{S_{NN}}$

 $\mu_B \nearrow$

For p_T differential observables (spectra, flow, ...) use relativistic hydrodynamics

QCD critical point

Figure from Bzdak et al., Phys. Rept. '20

What is the nature of the quark-hadron transition at finite baryon density?

Is there a QCD phase transition and critical point? Where?

Tackle these questions with heavy-ion collisions

Critical point and fluctuations

Density fluctuations at macroscopic length scales

Critical opalescence

Unfortunately, we cannot do this in heavy-ion collisions

Event-by-event fluctuations and statistical mechanics

Consider a fluctuating number N

Cumulants: $G_N(t) = \ln \langle e^{tN} \rangle = \sum_{n=1}^{\infty} \kappa_n \frac{t^n}{n!}$ variance $\kappa_2 = \langle (\Delta N)^2 \rangle = \sigma^2$

skewness

 $\kappa_3 = \langle (\Delta N)^3
angle$

kurtosis

 $\kappa_4 = \langle (\Delta N)^4 \rangle - 3 \langle (\Delta N^2) \rangle^2$

width
asymmetry

peak shape

Statistical mechanics:

Grand partition function

$$ln Z^{
m gce}(T,V,\mu) = ln \left[\sum_{N} e^{\mu N} Z^{
m ce}(T,V,N)
ight],$$

$$\kappa_n \propto rac{\partial^n (\ln Z^{
m gce})}{\partial (\mu_N)^n}$$

Cumulants measure chemical potential derivatives of the (QCD) equation of state

Applications

• (QCD) critical point – large critical fluctuations of baryon (proton) number

M. Stephanov, Phys. Rev. Lett. (2011)

• Test of (lattice) QCD at $\mu_B \approx 0$

Correlation length $\xi \to \infty$ diverges at the critical point

$$\kappa_2\sim\xi^2$$
, $\kappa_3\sim\xi^{4.5}$, $\kappa_4\sim\xi^7$

Looking for non-monotonic dependence of κ_4 vs $\sqrt{s_{NN}}$

• Freeze-out from fluctuations

Borsanyi et al. PRL 113, 052301 (2014); Bazavov et al. PRL 109, 192302 (2012) 14

Example: Liquid-gas transition with van der Waals equation

VV, Anchishkin, Gorenstein, Poberezhnyuk, Phys. Rev. C 92, 054901 (2015)

Measuring cumulants in heavy-ion collisions

Cumulants are extensive, $\kappa_n \sim V$, use ratios to cancel out the volume

$$\frac{\kappa_2}{\langle N \rangle}$$
, $\frac{\kappa_3}{\kappa_2}$, $\frac{\kappa_4}{\kappa_2}$

Experimental measurements

Reduced errors (better statistics) to come soon from beam energy scan II program

Can we learn more from the more accurate data available for κ_2 and κ_3 ?

Theory vs experiment: Challenges for fluctuations

Theory

 $\ensuremath{\mathbb{C}}$ Lattice QCD@BNL

- Coordinate space
- In contact with the heat bath
- Conserved charges
- Uniform
- Fixed volume

Experiment

STAR event display

- Momentum space
- Expanding in vacuum
- Non-conserved particle numbers
- Inhomogenous
- Fluctuating volume

When are the measured fluctuations grand-canonical?

- Consider event-by-event fluctuations of particle number in acceptance ΔY_{accept} around midrapidity
- Scales
 - ΔY_{accept} acceptance
 - ΔY_{total} full space
 - ΔY_{corr} rapidity correlation length (thermal smearing)
 - ΔY_{kick} diffusion in the hadronic phase
- **GCE** applies if $\Delta Y_{total} \gg \Delta Y_{accept} \gg \Delta Y_{kick}, \Delta Y_{corr}$
- In practice $\Delta Y_{total} \gg \Delta Y_{accept}$ and $\Delta Y_{accept} \gg \Delta Y_{corr}$ are not simultaneously satisfied
 - Corrections from baryon conservation are large [Bzdak et al., PRC '13]
 - $\Delta Y_{corr} \sim 1 \sim \Delta Y_{accept}$ [Ling, Stephanov, PRC '16]

Need dynamical description

STAR event display

V. Koch, arXiv:0810.2520

Dynamical approaches to the QCD critical point search

- 1. Dynamical model calculations of critical fluctuations
 - Fluctuating hydrodynamics
 - Equation of state with tunable critical point [P. Parotto et al, Phys. Rev. C 101, 034901 (2020)]
 - Predict CP signatures dependent on its location

Under development within the Beam Energy Scan Theory (BEST) Collaboration

BEST [X. An et al., Nucl. Phys. A 1017, 122343 (2022)]

- 2. Deviations from precision calculations of the non-critical baseline
 - Include essential non-critical contributions to (net-)proton number cumulants
 - Exact baryon conservation + hadronic interactions (hard core repulsion)
 - Based on realistic hydrodynamic simulations tuned to bulk data

[VV, C. Shen, V. Koch, Phys. Rev. C 105, 014904 (2022)]

Excluded volume effect

Incorporate repulsive baryon (nucleon) hard core via excluded volume VV, M.I. Gorenstein, H. Stoecker, Phys. Rev. Lett. 118, 182301 (2017)

Amounts to a van der Waals correction for baryons in the HRG model

 $V \rightarrow V - bN$

 $\leftarrow 2r \rightarrow$

Figure from Ishii et al., PRL '07

• Net baryon kurtosis suppressed as in lattice QCD

$$\frac{\chi_4^B}{\chi_2^B} \simeq 1 - \frac{12b\phi_B(T)}{\Phi_B(T)} + O(b^2)$$

• Reproduces virial coefficients of baryon interaction from lattice QCD

Excluded volume from lattice QCD: b

$$b \approx 1 \text{ fm}^3$$

VV, A. Pasztor, S. Katz, Z. Fodor, H. Stoecker, Phys. Lett. B 755, 71 (2017) 21

RHIC-BES: Hydrodynamic description in non-critical scenario

- Collision geometry based 3D initial state
 - Constrained to net proton distributions [Shen, Alzhrani, Phys. Rev. C '20]
- Viscous hydrodynamics evolution MUSIC-3.0
 - Energy-momentum and baryon number conservation
 - Crossover equation of state based on lattice QCD [Monnai, Schenke, Shen, Phys. Rev. C '19; also Noronha-Hostler, Parotto, Ratti, Stafford, Phys. Rev. C '19]
- Cooper-Frye particlization at $\epsilon_{sw} = 0.26 \text{ GeV}/\text{fm}^3$

$$\omega_p rac{dN_j}{d^3 p} = \int_{\sigma(x)} d\sigma_\mu(x) \, p^\mu \, rac{d_j \, \lambda_j^{\mathsf{ev}}(x)}{(2\pi)^3} \, \exp\left[rac{\mu_j(x) - u^\mu(x) p_\mu}{T(x)}
ight].$$

- Particlization respects QCD-based baryon number distribution
 - Incorporated via baryon excluded volume b = 1 fm³
 [VV, V. Koch, Phys. Rev. C 103, 044903 (2021)]
- Incorporates exact global baryon conservation via a novel method [VV, Phys. Rev. C 105, 014903 (2022)]

Net proton cumulant ratios

- Data at $\sqrt{s_{NN}} \ge 20$ GeV consistent with non-critical physics (baryon conservation and repulsion)
- Effect from baryon conservation is larger than from repulsion
- Excess of skewness in data at $\sqrt{s_{NN}} < 20$ GeV hint of attractive interactions? Critical point?

Net proton cumulant ratios

- Data at $\sqrt{s_{NN}} \ge 20$ GeV consistent with non-critical physics (baryon conservation and repulsion)
- Effect from baryon conservation is larger than from repulsion
- Excess of skewness in data at $\sqrt{s_{NN}} < 20$ GeV hint of attractive interactions? Critical point?

Correlation Functions

• Analyze genuine multi-particle correlations via factorial cumulants \hat{C}_n [Bzdak, Koch, Strodthoff, Phys. Rev. C '17]

$$\hat{C}_1 = \kappa_1, \qquad \hat{C}_3 = 2\kappa_1 - 3\kappa_2 + \kappa_3, \\ \hat{C}_2 = -\kappa_1 + \kappa_2, \quad \hat{C}_4 = -6\kappa_1 + 11\kappa_2 - 6\kappa_3 + \kappa_4$$

- Three- and four-particle correlations are small without a CP
 - Multi-particle correlations expected near the critical point [Ling, Stephanov, PRC '15]

- Signals from the data at $\sqrt{s_{NN}} \le 20$ GeV
 - Excess of two-proton correlations
 - Possibility of significant 4-proton correlations
 - Critical point?

Lower energies $\sqrt{s_{NN}} \le 7.7$ GeV

Naïvely, could indicate QCD critical point near HADES freeze-out at $T \approx 70$ MeV, $\mu_B \approx 875$ MeV

Some effective QCD approaches do predict the critical point close to that region, e.g. holography [Critelli, Noronha, Noronha-Hostler, Portillo, Ratti, Rougemont, Phys. Rev. D 96, 096026 (2017)] [Grefa et al., Phys. Rev. D 104, 034002 (2021)]

QCD phase structure: What we learned so far

- Data at high energies ($\sqrt{s_{NN}} \ge 20$ GeV) consistent with "non-critical" physics
- Disfavors critical point at $\mu_B/T < 2-3$, consistent with what we know from lattice QCD
- Interesting physics at high densities probed by future experiments, neutron stars & their mergers

Outlook: Equation of state for heavy ions and neutron stars

P. Senger (GSI)

L. Weih, L. Rezzolla (Frankfurt)

Summary

- Strongly interacting QCD matter under extreme conditions
 - Undergoes a transition to quark-gluon plasma at trillion kelvin degrees
 - Behaves like a fluid described by hydrodynamics
 - Phase structure at finite baryon density still largely unknown, no phase transition at high energies
- Fluctuations are a powerful tool to explore the QCD phase diagram
 - Heavy-ion data are described quantitatively at $\sqrt{s_{NN}} \ge 20$ GeV ($\mu_B/T < 3$) without critical point
 - Possible critical point signals at $\sqrt{s_{NN}} < 14.5$ GeV
 - More evidence at lower energies to come from future experiments and connections to neutron star phenomena

Thanks for your attention!

Backup slides

Acceptance dependence of two-particle correlations

- Changing y_{max} slope at $\sqrt{s_{NN}} \le 14.5$ GeV? ٠
- Volume fluctuations? [Skokov, Friman, Redlich, PRC '13] •
 - $C_2/C_1 + = C_1 * v_2$ •
 - Can improve low energies but spoil high energies? •
- Exact electric charge conservation? •
 - Worsens the agreement at $\sqrt{s_{NN}} \le 14.5$, higher energies ٠ virtually unaffected

⊢ ₁₅/

das

μ (MeV)

- **Attractive interactions?**
 - Could work if baryon repulsion turns • into attraction in the high- μ_B regime (MeV) 20
 - **Critical point?** ٠

Outlook: baryon cumulants from protons

- net baryon \neq net proton
- Baryon cumulants can be reconstructed from proton cumulants via binomial (un)folding based on isospin randomization [Kitazawa, Asakawa, Phys. Rev. C 85 (2012) 021901]
 - Amounts to an additional "efficiency correction" and requires the use of joint factorial moments, only experiment can do it model-independently

- Net protons described within errors but not sensitive to the equation of state for the present experimental acceptance
- Large effect from resonance decays for lighter particles + conservation of electric charge/strangeness
- Future measurements will require larger acceptance

Effects of baryon annihilation and local conservation

O. Savchuk, V.V., V. Koch, J. Steinheimer, H. Stoecker, arXiv:2106.08239

Baryon annihilation $B\overline{B} \rightarrow n\pi$ in afterburners (UrQMD, SMASH) suppresses baryon yields

- ALICE data requires local baryon conservation across $\Delta y \sim \pm 1.5$ with UrQMD annihilations (no regenerations) or global conservation ($\Delta y \sim \Delta y_{tot}$) without annihilations
- Local conservation and $B\overline{B}$ annihilation can be constrained from data through the combined analysis of $\kappa_2[p-\overline{p}]$ and $\kappa_2[p+\overline{p}]$

Thermodynamic analysis of HADES data

VV, Koch, in preparation

- Single freeze-out scenario: Emission from Siemens-Rasmussen hypersurface with Hubblelike flow
 - \rightarrow Pion and proton spectra o.k. [S. Harabasz et al., PRC 102, 054903 (2020)]
- Uniform $T \approx 70$ MeV, $\mu_B \approx 875$ MeV across the fireball [A. Motornenko et al., PLB 822, 136703 (2021)]

• Fluctuations:

- Same as before but incorporate additional binomial filtering to account for protons bound in light nuclei
- Uniform fireball \rightarrow Final proton cumulants are linear combinations of baryon susceptibilities χ^B_n

• In the grand-canonical limit (no baryon conservation) the data are described well with

$$\frac{\chi_2^B}{\chi_1^B} = 9.35 \pm 0.40, \qquad \frac{\chi_3^B}{\chi_2^B} = -39.6 \pm 7.2, \qquad \frac{\chi_4^B}{\chi_2^B} = 1130 \pm 488$$

- Could be indicative of a critical point near the HADES freeze-out at $T \approx 70$ MeV, $\mu_B \approx 875$ MeV
- However, the results are challenging to describe with baryon conservation included

