
Computational Physics (PHYS6350)
Lecture 3: Interpolation

Instructor: Volodymyr Vovchenko (vvovchenko@uh.edu)
Course materials: https://github.com/vlvovch/PHYS6350-ComputationalPhysics
Online textbook: https://vovchenko.net/computational-physics/

mailto:vvovchenko@uh.edu
https://github.com/vlvovch/PHYS6350-ComputationalPhysics
https://vovchenko.net/computational-physics/

Interpolation

Reference: Chapter 3 of Numerical Recipes Third Edition by W.H. Press et al.

Sometimes we know the value of some function 𝑓(𝑥) at a discrete set of
points 𝑥0, 𝑥1,… , 𝑥𝑁, but we do not know how to (easily) calculate its value at
an arbitrary x

Examples:
• Physical measurements
• Long numerical calculations

Interpolation is a mathematical technique used to estimate values between a
discrete set of known data points. It is also employed to approximate an
unknown function based on its known values over a certain range.

Two steps:
1. Fitting the interpolating function to data points
2. Evaluating the interpolating function at a target point x

Interpolation

Recall the function 𝑓(𝑥) = sin(𝑥)

Imagine that we cannot easily compute sin(𝑥) at arbitrary 𝑥 and
all we are given is its values at some finite number of points

Now let us consider different methods of interpolating the function

Nearest-neighbor interpolation

Simply assign the value of the closest data point to x, i.e.

𝑓(𝑥) = 𝑓𝑛𝑛(𝑥) where 𝑓𝑛𝑛(𝑥) = 𝑦𝑖

Where 𝑖 is chosen such that |𝑥 − 𝑥𝑖| is the smallest among all 𝑖.

Nearest-neighbor interpolation

In Python:

Advantages:
• Very simple
• Easy to generalize to multiple dimensions

Disadvantages:
• Limited accuracy
• Better & simple options available

Linear interpolation

Let us have the data points (x0,y0) and (x1,y1)

Linear interpolant is a straight line between these points

Use it to calculate the function value at any 𝑥	 ∈ [𝑥0, 𝑥1]

For a larger set of points x0 < x1 < … < xN, find
the interval (xi, xi+1) enveloping x and use the
linear interpolant formula

Credit: Wikipedia

Linear interpolation
In Python:

Advantages:
• Simple
• Generalizes to multiple dimensions
• More accurate than nearest-neighbor appr.

Disadvantages:
• Limited accuracy compared to polynomials
• Not good for derivatives

Polynomial interpolation (Lagrange form)

Theorem: There exists a unique polynomial of order n that
interpolates through n+1 data points (x0,y0), (x1,y1), …, (xn,yn)

How to build such a polynomial?

Consider Lagrange basis functions:

Easy to see that for 𝑥 = 𝑥𝑘 one has 𝐿𝑗(𝑥𝑘) = 𝛿𝑘𝑗

Therefore:

Polynomial interpolation

For our example 𝑓(𝑥) 	= 	sin(𝑥)

one obtains

In practice, the Lagrange form is more stable with respect to
round-off errors

Lagrange form

Canonical form

Polynomial interpolation

In Python:

Polynomial interpolation: Newton polynomial

Newton interpolating polynomial

Newton basis functions

Divided differences

The polynomial itself is the same as Lagrange!

Advantage: Easier to incrementally add data points

Polynomial interpolation: Errors and artefacts

• Truncation errors

• Lagrange remainder

• Round-off errors
• Especially for high-order polynomials

Truncation errors can be a problem if
• High-order derivatives f(n+1)(x) of the function are significant
• The choice of nodes leads to a large value of the product factor

Runge phenomenon: Oscillation at the edges of the interval
which gets worse as the interpolation order is increased

derivative factor product factor

Polynomial interpolation: Runge phenomenon

Consider the Runge function:

Let us do polynomial interpolation using equidistant nodes

Polynomial interpolation: Chebyshev nodes

Recall the truncation error

So far, we used the equidistant nodes:

Can we choose the nodes xi differently to minimize the product factor?

Chebyshev nodes:

Yes!

Equidistant vs Chebyshev nodes

Plot as a function of 𝑥 for different number of nodes 𝑛 on a (−1,1)	interval

Back to the Runge function: Chebyshev nodes

Polynomial interpolation: Summary

Advantages:
• Generally, more accurate than the linear interpolation
• Derivatives are continuous
• Can be used for numerical integration and differential equations

Disadvantages:
• Implementation not so simple
• Artefacts possible (such as large oscillations between nodes)
• Polynomials of large order susceptible to round-off errors
• Not easily generalized to multiple dimensions

Spline interpolation

Advantages:
• More accurate than linear interpolation
• Derivatives are continuous
• Avoids issues with polynomials of high degree

Disadvantages:
• Implementation not so simple
• Artefacts such as large oscillations between nodes are possible

Connect each pair of nodes by a cubic polynomial

4𝑛 coefficients 𝑎𝑖, 𝑏𝑖, 𝑐𝑖, 𝑑𝑖	determined from
• data points and continuity (2n equations)
• + continuity of 1st and 2nd derivatives (2n-2 equations)
• + boundary conditions for first derivative (2 equations)

Multiple dimensions

Functions of more than one variable, e.g. 𝑓(𝑥, 𝑦) 	= 	sin(𝑥 + 𝑦)

Data points: (𝑥𝑖, 𝑦𝑖, 𝑓𝑖)

Main methods:
• Nearest-neighbor

• Successive 1D interpolations

2D nearest-neighbor

Consider f(x,y) = sin(x+y)
Data points at integer values x,y=0,1,…6 (regular grid)

2D nearest-neighbor:
Simply assign the value of the closest data point to (x,y) in the
plane

Bilinear interpolation

Bilinear interpolation: apply linear interpolation twice

Advanced topics (further reading)

Gaussian process regression (Kriging)
• Uses prior assumption on covariances
• Provides a measure of uncertainty
• Extendable to noisy data and multiple dimensions

Hermite interpolation
• Interpolation of both the function values and derivative
• Can be polynomial or splines

final project idea(?)

final project idea(?)

