
Computational Physics (PHYS6350)
Lecture 22: Fourier transform

• Discrete Fourier transform (DFT)
• Fast Fourier Transform (FFT)

Instructor: Volodymyr Vovchenko (vvovchenko@uh.edu)
Course materials: https://github.com/vlvovch/PHYS6350-ComputationalPhysics
Online textbook: https://vovchenko.net/computational-physics/

mailto:vvovchenko@uh.edu
https://github.com/vlvovch/PHYS6350-ComputationalPhysics
https://vovchenko.net/computational-physics/


Fourier transform

Periodic functions (e.g. over x ∈	[0,L]) permit Fourier decomposition

The Fourier coefficients read

If a function is not periodic, it can always be forced to be periodic
over by creating copies of its x ∈	[0,L] form

Applications: 
• signal processing (e.g. frequencies)
• image compression
• solutions to partial differential equations
• convolutions of functions



Fourier transform: sines and cosines

If function is even (symmetric) around the midpoint x = L/2, it permits cosine series

The coefficients are related to the ones of the exponential series

If function is odd (antisymmetric) around the midpoint x = L/2, it permits sine series



Evaluating Fourier coefficients

Apply N-point trapezoidal rule

The function is periodic, f(0) = f(L), thus

This is the discrete Fourier transform (DFT). 
Typically, one uses the coefficients without the factor 1/N, i.e. If yn are all real,



Evaluating Fourier coefficients

Function Fourier transform



Evaluating Fourier coefficients

Consider a wavelike form with noise



Inverse Fourier transform

inverse discrete Fourier transform (inverse DFT)

Consider the following geometric progression

We use this now to evaluate the following sum



Inverse DFT

Recover the original function up to round-off error



Inverse DFT

Original DFT Inverse DFT



Discrete cosine and sine transforms

With some optimizations one can avoid using complex numbers



Fast Fourier Transform

Straight DFT complexity: O(N2)

Impractical for large data sets

Can we do better?

Fast Fourier Transform (FFT) algorithms achieve O(N log N)



Fast Fourier Transform: Cooley-Tukey algorithm (1965)
To see how it works, let us consider a case where N is a power of two, N = 2M, and we want to 
compute the Fourier transform of (y₀, y₁, ..., yN-1). By definition we have:

We can split the sum into even and odd elements:

ck can be expressed as a sum of two elements:
• one is the kth element from a DFT of all even elements: (y₀, y₂, ..., yN−2),
• the other is the kth element from a DFT of all odd elements: (y₁, y₃, ..., yN−1)



Fast Fourier Transform: Cooley-Tukey algorithm (1965)

Combine with

To compute DFT of (y0,…,yN) we only need to compute two N/2 DFTs of even and odd components of y. 

Divide and conquer: continue recursively until N = 1, where ck = yk

At each step N is halved Complexity: O(N log N)

The interpretation makes sense if 𝑘	 < 	𝑁/2

Other Fourier components can be expressed as 𝑘 + 𝑁/2	and read:



FFT implementation



FFT vs simple DFT



FFT for the signal



FFT for the signal

numpy: 


