
Computational Physics (PHYS6350)
Lecture 20: Problems in statistical physics part II

• Simulated annealing 
• Percolation simulation

Instructor: Volodymyr Vovchenko (vvovchenko@uh.edu)
Course materials: https://github.com/vlvovch/PHYS6350-ComputationalPhysics
Online textbook: https://vovchenko.net/computational-physics/

mailto:vvovchenko@uh.edu
https://github.com/vlvovch/PHYS6350-ComputationalPhysics
https://vovchenko.net/computational-physics/


Finding the ground state

Recall how in the Metropolis algorithm we move between states

For a move from state i to state j

At T = 0 only the single ground state Ei = 0 contributes to the partition function, 
however, finding this state directly may be challenging (too long equilibration, have to 
probe a lot of states, can end up in a local minimum)

Alternative approach:
• Start at some finite T
• Run the Metropolis algorithm to reach equilibrium
• Lower the temperature a bit and run the Metropolis algorithm to reach new 

equilibrium
• Repeat until T = 0 where we will reach the ground state

• If Ej<Ei, the move is unconditionally accepted.
• If Ej>Ei, the move is accepted with a probability 



Simulated annealing

Apply this logic to find the global minimum of a function f(x)

Example:

Helps avoid getting stuck in a local minimum

• Each step consider a move 𝑥 → 𝑥 + ∆𝑥 where ∆𝑥 is drawn e.g. 
from the normal distribution

• Accept the move with acceptance probability a la Metropolis

• Lower the temperature T in the next step via a cooling schedule
    For example exponential schedule giving at step n:

• Stop the process once T goes below a certain threshold T<Tmin



Simulated annealing

Apply it to our function



Simulated annealing

Apply it to our function



Simulated annealing

The solution is approximate and not guaranteed to give the global minimum, especially if cooling is too fast

E.g. 𝜏 = 100 → 10

Run 1 Run 2 Run 3

The choice of possible moves, acceptance probabilities, and cooling schedule should be varied and tailored for 
the problem at hand. It is also advisable to keep track of the global minimum value achieved so far.



Simulated annealing

A more involved example



Simulated annealing

A more involved example



Simulated annealing and the traveling salesman problem

Traveling salesman problem (TSP):
You have N cities where each pair of cities is connected by roads.
You need to visit all cities exactly once starting ending the trip in the 
starting city.
The goal is to find a path with the shortest total distance to travel.

Credit: WikipediaThe traveling salesman problem in NP-hard 
Known exact solutions are exponential in N

Brute-force: O(N!)
Held-Karp algorithm: O(N2 2N)
Approximate solution with simulated annealing:
• Start with random path
• At each step swap two cities from the path and compute the total distance 

change ∆𝐷
• Accept the new path with probability

• Decrease T in next step in accordance with annealing schedule



Simulated annealing and the traveling salesman problem

Code adapted from Example 10.4 from M. Newman, Computational Physics, 
http://www-personal.umich.edu/~mejn/cp/programs/salesman.py



Percolation threshold

Percolation theory studies the formation of long-range connectivity in random systems.
Usually, one can imagine a geometric configuration where certain “conducting” objects occupy 
a fraction of space

Example: square lattice
• Some fraction p of sites is occupied
• Occupied sites form clusters through connection to its four neighbors
• Above certain pc, and long-range, ”infinite” cluster forms

Images from https://faculty.math.illinois.edu/~kkirkpat/percolation.html

conductorinsulatorinsulator



Percolation threshold

Example: square lattice

Images from https://faculty.math.illinois.edu/~kkirkpat/percolation.html

conductorinsulatorinsulator

Above a percolation threshold pc connectivity across the whole grid forms, insulator -> conductor

Another example:
disk percolation

How to find pc?



Percolation threshold simulation

Simulate percolation threshold with Monte Carlo methods

Strategy 1:
• For a given value of p mark each site as occupied with a 

probability p
• Find all clusters (e.g. with union-find data structure)
• Check if a conducting cluster from bottom to top edge exists
• We expect the cluster to exists for p>pc and not exist for p<pc

Strategy 2:
• Start with zero occupied site
• Mark a random unoccupied site as occupied and check if it forms 

a new cluster
• Repeat the process until a conducting cluster is formed
• The ratio of occupied to total sites is the estimate for pc

Caveats: finite-size effects

https://en.wikipedia.org/wiki/Disjoint-set_data_structure


Percolation threshold: union-find data structure

For finding clusters we can utilize the union-find data structure

Here implemented for a 2D grid, and keeps track of max and min y coordinate



Percolation threshold: implementing strategy 2



Percolation threshold: implementing strategy 2

N = 400:



Percolation threshold: implementing strategy 2

N = 400:

10000 runs with N = 10: Literature value:
pc = 0.592746


