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Nonuniformly distributed random numbers

In many cases we deal with random numbers 𝜉 that are distributed non-uniformly.

Common examples are:

There are two common methods for generating nonuniform random variates. 
They both make use of uniformly distributed variates.

• Inverse transform sampling
• Rejection sampling



Inverse transform sampling



Inverse transform sampling

The algorithm follows these steps:
1. Calculate the cumulative distribution function (CDF)

2. Find the inverse function G-1(y) as the solution to the equation

3. Sample uniformly distributed random variables 𝜂 and compute 𝜉 using the inverse function:

Challenges: Sometimes, evaluating G(x) and/or G-1(y) explicitly is difficult. In such 
cases, numerical integration and/or non-linear equation solvers may be required.



Inverse transform sampling: Exponential distribution

Example: Exponential Distribution

1. Recall the radioactive decay process. The time of decay is distributed according to the probability density 
function:

2. The cumulative distribution function is given by:

3. To apply inverse transform sampling, we need to invert F(x) by 
solving:

4. Solving for t, we obtain:



Sampling radioactive decay time



Sampling points inside a circle

One way to sample points inside a unit circle is by switching to polar coordinates:

where we sample r ∈	[0,1)  and 𝜙 ∈ [0, 2π).

Naively, one could sample r and 𝜙 independently from two uniform distributions. Let’s see what happens!



Sampling points inside a circle

The points clump more in the center!

One way to sample points inside a unit circle is by switching to polar coordinates:

where we sample r ∈	[0,1)  and 𝜙 ∈ [0, 2π).
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Sampling points inside a circle

• The points clump more in the center because r is not uniformly distributed.

• Recall the differential area element in polar coordinates:

• This leads to the probability density functions:

• Cumulative Distribution Function (CDF)

• To obtain a properly distributed r, we solve 𝐹! 𝑟 = 𝜂 which gives: 𝑟 = 𝜂
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Sampling of an Isotropic Direction in 3D

One common problem in Monte Carlo simulations is the random sampling of an 
isotropic direction in 3D space. This issue arises in various contexts, such as:

• Sampling a random orientation of an axially symmetric object (e.g., a rod).

• Sampling the momentum direction of a particle.

This problem is equivalent to choosing a random point on a unit sphere. The 
coordinates x, y, z on the sphere can be parametrized using azimuthal and polar angles:

• 𝜙 ∈ [0, 2𝜋) (azimuthal angle)
• 𝜃 ∈ [0, 𝜋) (polar angle)

Using these angles, the Cartesian coordinates are given by:

𝑥 = sin 𝜃 cos𝜙
𝑦 = sin 𝜃 sin𝜙
𝑧 = co𝑠 𝜃



Sampling of an Isotropic Direction in 3D

• The solid angle element is:

𝑥 = sin 𝜃 cos𝜙
𝑦 = sin 𝜃 sin𝜙
𝑧 = co𝑠 𝜃

• The random variables 𝜙 and 𝜃	are independent.

• 𝜙	is uniformly distributed in [0, 2𝜋], making its sampling straightforward.

• However, 𝜃	has a weighted probability density function:

The cumulative distribution function is:

Solving 𝐹" 𝜃 = 𝜂, we obtain:
In practice, work directly with co𝑠 𝜃 and sin 𝜃:



Sampling an isotropic direction



Sampling normally distributed variables

One of the most common probability distributions is the normal (or Gaussian) distribution, given by:

After this transformation, the new variable follows a standard normal distribution with zero mean and unit 
standard deviation:

There are many standard methods for sampling from this distribution. One common approach is to 
standardize the variable by making the transformation 𝑥 → 𝜇 + 𝜎𝑥

Calculating the cumulative distribution function 𝐹 𝑥 = ∫#$
% 𝜌 𝑥& 𝑑𝑥′ is not straightforward, use numerical methods.



Sampling normally distributed variables



Sampling normally distributed variables



Rejection sampling

The rejection sampling method allows one to sample a variable 𝜉	from an envelope 
distribution and accept or reject it with a certain probability.
Consider again the probability density function for the polar angle:

Since 𝜌" is bounded from above, we define:

1. Sample a candidate value 𝜃'()* 	from a uniform distribution over (0, 𝜋).

2. Accept 𝜃'()* 	with probability:

3. This step can be performed by sampling y from a uniform distribution 
over (0, 𝜌"+(%) and accepting 𝜃'()* if 𝑦	 < 	𝜌"(𝜃'()*)

Geometric Interpretation: If we consider 𝜃'()* = 𝑥 and y as the coordinates of a point in a plane, we 
accept 𝜃'()* 	if it lies below the curve defined by 𝜌" 𝜃 . This ensures that 𝜃'()* 	values are accepted at a 
rate proportional to 𝜌" 𝜃 , as desired.

Advantages of Rejection Sampling: 
𝜌" 𝜃 	does not need to be a normalized distribution for the method to work.



Rejection sampling



Pros and Cons of Rejection Sampling

Pros:
• Does not require the distribution to be normalized.
• Works even if ymax is larger than the true maximum of 𝜌(𝑥)
• Applicable to generic distributions and does not require the evaluation of the 
cumulative distribution function.

Cons:
• Can be inefficient if the rejection rate is high (e.g., for highly peaked distributions).
• Not directly applicable to distributions over infinite ranges.

Generalizations of Rejection Sampling
To address some of its limitations, several generalizations of rejection sampling can be used, 
including:
• Adaptive rejection sampling by considering multiple enveloping rectangles.
• Variable transformation to map an infinite interval into a finite one.
• Sampling from a non-uniform enveloping distribution for better efficiency.



Importance sampling

Recall the calculation of an integral as statistical average

where

Some issues with the method:
• Sample unimportant regions (e.g. f is highly peaked)
• Integrable singularities

Normalization:
Sample 𝑥, from a non-uniform distribution w(x) that resembles f(x).

The integrand is then calculated as

Error:

Importance sampling:



Importance sampling

• For w(x)=1/(b-a) we recover the mean value method

• For w(x) ∝ f(x) one has -(%)
0(%)

 = const = I and 𝛿𝐼 = 0



Importance sampling



Importance sampling: Example

Integrable singularity at x=0 



Importance sampling: Example

Mean value method Importance sampling

Statistical error is more than x10 smaller than in the mean value method.
We would need more than x100 samples in the mean value method to reach the 
same accuracy as importance sampling in this case.

f(x)/w(x)


