
Computational Physics (PHYS6350)
Lecture 8: Numerical Derivatives

• Finite differences
• Automatic differentiation

Instructor: Volodymyr Vovchenko (vvovchenko@uh.edu)
Course materials: https://github.com/vlvovch/PHYS6350-ComputationalPhysics
Online textbook: https://vovchenko.net/computational-physics/

mailto:vvovchenko@uh.edu
https://github.com/vlvovch/PHYS6350-ComputationalPhysics
https://vovchenko.net/computational-physics/

Numerical differentiation

References:

Generic problem: evaluate

Chapter 5 of Computational Physics by Mark Newman

We need numerical differentiation when
• Function f is known at a discrete set of points
• Too expensive/cumbersome to do directly

• For example, when f(x) itself is a solution to a complex
system of non-linear equations, calculating f’(x) explicitly
will require rewriting all the equations

https://autodiff.github.io/

https://autodiff.github.io/

Forward difference

Simply approximate

by

where h is finite

Taylor theorem:

gives the approximation error estimate of

Backward difference

Backward difference

Taylor theorem:

gives the approximation error estimate of

Central difference

Recall the forward and backward difference and their errors

Taking the average of the two cancels out the O(h) error term

Error:

central difference

High-order central difference

To improve the approximation error, use more function evaluations, e.g.

Determine A,B,C,D,E using Taylor expansion to cancel all terms up to h4

High-order terms:

Balancing truncation and round-off errors

If h is too small, round-off errors become
important

• cannot distinguish x+h and x and/or
f(x+h) and f(x) with enough accuracy

Rule of thumb:
• if 𝜀 is machine precision and the truncation

error is of order O(hn), then h should not be
much smaller than ℎ~!"# 𝜀

The higher the finite difference order is, the larger h should be

Credit: Wikipedia

Balancing truncation and round-off errors

Consider central difference:

Total error:

error(df/dx) = 𝜀$
|& ' |
(

	 + 	 |&!!! ' |
)

ℎ*
round-off truncation

𝜀$	~	10+,)

Best case: machine precision

Minimizing with respect to h gives optimal choice for the step size:

ℎ = " 6	𝜀$ 𝑓--- 𝑥 /|𝑓 𝑥 |	~	 " 𝜀$ 𝑓--- 𝑥 /|𝑓 𝑥 |

More generally, for O(hn) scheme one has

ℎ~
#$%

𝜀$ 𝑓(/0,) 𝑥 /|𝑓 𝑥 |

𝜀$ - relative error in f(x)

Balancing truncation and round-off errors

Let f(x) = exp(x)

Calculate the derivatives at x = 0

Optimal ℎ~2 10!"#~10!$
Forward difference O(h):

Balancing truncation and round-off errors

Let f(x) = exp(x)

Calculate the derivatives at x = 0

Optimal ℎ~2 10!"#~10!$
Backward difference O(h):

Balancing truncation and round-off errors

Let f(x) = exp(x)

Calculate the derivatives at x = 0

Optimal ℎ~3 10!"#~10!%
Central difference O(h2):

Balancing truncation and round-off errors

Let f(x) = exp(x)

Calculate the derivatives at x = 0

Optimal ℎ~4 10!"#~10!&
Central difference O(h4):

High-order derivatives

Now apply the central difference again to f’(x+h/2) and f’(x-h/2)

General formula [to order O(h2)]

Central difference

Second derivative

f(x) = exp(x)

Optimal ℎ~5 10!"#~10!'

Partial derivatives

Reapply the central difference to calculate

Let us have a function of two variables: f(x,y)
Use central difference to calculate first-order derivatives

Finite differences: Summary

• Forward/backward differences
• Useful when we are given a grid of function values
• Need f’(x) at the same point as x
• Have limited accuracy (error is linear in h)

• Central difference
• More precise than forward/backward differences (error is quadratic in h)
• Gives f’(x) estimate at the midpoint of function evaluation points

• Higher-order formulas are obtained by using more than two function evaluations
• Can be used when limited number of function evaluations available

• Straightforwardly extendable to high-order and partial derivatives

• Balance between truncation and round-off error must be respected
• h should not be taken too small

Automatic differentiation

Automatic differentiation (or algorithmic differentiation) is a computational
technique to evaluate derivatives of a function specified by a computer program

It is based on the fact that every computer calculation executes a sequence of
• Elementary arithmetic operations (+,-,*,/)
• Elementary functions (exp, log, sin, …)

Calculation of the derivatives then proceeds via the chain rule

View computer calculation as evaluating a composite function:

Numerical value:

Derivative (gradient):

Resulting calculating is in theory exact

Automatic differentiation: Example

Numerical value Derivative (gradient)

Step 0: 𝑤(= 𝑥

𝑤" = ℎ(𝑤()

𝑤) = 𝑔(𝑤")

𝑤& = 𝑓 𝑤) = 𝑦

Step 1:

Step 2:

Step 3:

�̇�(= 1

�̇�" = ℎ* 𝑤(∗ �̇�(

�̇�) = 𝑔* 𝑤" ∗ �̇�"

�̇�& = 𝑓* 𝑤) ∗ �̇�) = 𝑑𝑦/𝑑𝑥

Keep track not only of intermediate function values 𝑤+ but also of gradients �̇�+ = 𝜕𝑤+/𝜕𝑥

𝑤+ can be a function of multiple predecessors 𝑤,:

Automatic differentiation: Forward and backward

Forward accumulation:

Reverse (adjoint) accumulation:

𝑤(= 𝑥 �̇�(= 1

Good for computing derivatives of many
functions with respect to single variable

Good for computing derivatives of a single
function with respect to many variables
(neural networks)

Automatic differentiation: Implementation

Implementing automatic differentiation proceeds by replacing real numbers by
dual numbers (value + derivative) and implementing dual number algebra

Python:
• JAX: https://docs.jax.dev/
• MyGrad: https://mygrad.readthedocs.io/en/latest/
• TensorFlow, PyTorch, …

C++:
• autodiff: https://autodiff.github.io/
• xad: https://auto-differentiation.github.io/
• …

https://docs.jax.dev/
https://mygrad.readthedocs.io/en/latest/
https://autodiff.github.io/
https://auto-differentiation.github.io/

Automatic differentiation: Example

analytic forward AD reverse AD

Automatic differentiation: A more involved example

Consider Dawson function

Compute using Gaussian quadrature

Automatic differentiation: A more involved example

Compute derivative with AD

Compare with the expected result

We combined numerical integration and automatic differentiation!

Automatic differentiation: Summary

Advantages:
• In theory exact calculation limited only by machine precision and by accuracy of the

function calculation itself
• Efficient, often requiring comparable number of operations relative to the original

calculation
• Works for implicit functions (such as those computed through Newton-Raphson method)
• Can be extended to high-order derivatives (gradient of a gradient)

Disadvantages:
• Requires adjustments to the existing code
• Can yield unexpected behavior for functions with noise of discontinuities
• Does not work well in the presence of branching [e.g. if bisection or golden section

search is used to compute f(x)]

