b]

Computational Physics (PHYS6350)

Lecture 16: Partial Differential Equations Part I

* Initial value problems
* Heat equation
 Wave equation

Reference: Chapter 9 of Computational Physics by Mark Newman

Instructor: Volodymyr Vovchenko (vvovchenko@uh.edu)

Course materials: https://github.com/vlvovch/PHYS6350-ComputationalPhysics
Online textbook: https://vovchenko.net/computational-physics/

mailto:vvovchenko@uh.edu
https://github.com/vlvovch/PHYS6350-ComputationalPhysics
https://vovchenko.net/computational-physics/

Initial value problem in PDEs

Many PDEs describe time evolution of fields u(t,x)

For example heat equation describing the temperature profile
ou u

o dx?

This equation describes the time evolution of u(t,x) given initial profile
u(t =0, x) = uy(x).
and boundary conditions

u(t, x = 0) = e (1),
ut,x=1L) = “righl(t)-

If boundary conditions are static, the solution will approach a stationary profile
at large times

Finite difference approach to heat equation

du o*u

a dx?

First, one discretizes the spatial coordinate into a grid with N+1 points, i.e.

X, =ak, k=0..N, a=LIN,

The spatial 2nd derivative is approximate with central difference

*u(t, x) L out,x+ a) — 2u(t,x) + u(t,x — a)
ox2 a? .

How to discretize time derivative?

Three common options:

e FTCS scheme

* Implicit scheme
* Crank-Nicolson method

Finite difference approach to heat equation: FTCS scheme

ou_ P

o ox2
FTCS (Forward Time Centered Space) scheme

Time derivative approximated by forward difference

Ju(t,x) _ u(t+ h,x)—u(t,x)
o h

This gives the following discretized PDE

ut+ h,x) —u(t,x) D ut,x + a) — 2u(t,x) + u(t,x — a)
h B a? |

The method is explicit: to evaluate u(t+h,x) one only needs u(t,x) at the present time

Discretized form
Wit =ull +r @l - 2ul +ul), k=1...N—1.

FTCS scheme for heat equation

ou D o%u

a7 ox?

Single iteration of the FTCS scheme in the time direction

r = Dh/a”2 is the dimensionless parameter) . , .
def heat FTCS_iteration(u, r): # Perform nsteps FTCS time iterations for the heat equation

- # u0: the initial profile
N=1 -1
enfu) # h: the size of the time step
nsteps: number of time steps
a: the spatial cell size
Lo # D: the diffusion constant
ﬁnzz%g?aryuig?dltlons def heat_FTCS_solve(u@, h, nsteps, a, D = 1.):
u = u0.copyl()
unew[N] = ulN] F=h %D/ a%k
for i in range(nsteps):
u = heat_FTCS_iteration(u, r)

unew = np.empty_Llike(u)

FTCS scheme
for i in range(1,N):

unew[i] = u[i]l + r * (u[i+1] = 2 % u[i] + u[i-1]) return u

return unew

Example

Let us consider Example 9.3 from M. Newman, Computational Physics:

We have a 1 cm long steel container, initially at a temperature 20° C. It is placed in a bath of cold water at 0° C and filled
on top with hot water at 50° C. Our goal is to calculate the temperature profile as a function of time. The thermal
diffusivity constant for stainless steel is D = 4.25 - 10® m2 s71.

We will calculate the profile at timest = 0.01s, 0.1s,0.4s, 1s, and 10 s.

ogngnS ¢ Thick ¢ cteel i . Solving the heat equation with FTCS scheme

. ickness of steel in meters = Ay —

4.25e-6 # Thermal diffusivity r =ihbya’2 =10:0425
100 # Number of divisions in grid)
L/N # Grid spacing Heat equation

#
L
D
N
a
h le-4 # Time-step (in s)

nnmnmnonno

50 A
print("Solving the heat equation with FTCS scheme")
print("r = hxD/a"2 =", h*D/ax*2)

Tlo
Tmid
Thi

0.0 # Low temperature in Celsius
20.0 # Intermediate temperature in Celsius 40 4
50.0 # High temperature in Celsius

Initialize

u = np.zeros([N+1],float)
Initial temperature
u[1:N] = Tmid

Boundary conditions
ul0] = Thi

ulN] = Tlo

w
o
1

T [Celsius]

N
o
1

current_time = 0. 10 -
for time in times:
nsteps = round((time - current_time)/h)
u = heat_FTCS_solve(u, h, nsteps, a, D)
profiles.append(u.copy()) 0-
current_time = time

0.000 0.002 0.004 0.006 0.008 0.010
x [cm]

Animation

Let us consider Example 9.3 from M. Newman, Computational Physics:

We have a 1 cm long steel container, initially at a temperature 20° C. It is placed in a bath of cold water at 0° C and filled
on top with hot water at 50° C. Our goal is to calculate the temperature profile as a function of time. The thermal

diffusivity constant for stainless steel is D = 4.25 - 10° m? 7.

We will calculate the profile at timest = 0.01s, 0.1s,0.4s, 1s, and 10 s.
Heat equation

50 A —— t=0.006s

40 4

W
o
|

T [Celsius]

N
o
|

10 -

0.000 0.002 0.004 0.006 0.008 0.010
x [cm]

Try a larger time step

11111111111111111
r = hxD/a”2 = 0.5099999999999999

Heat equation

. AAMMAMW"M

AL e

xxxxx

Stability analysis: Neumann method

Recall Fourier transform u(t,x) = X, ¢ (t) e**

Analyze the following solutions: u(t,x) = ¢ (t)e'**

Plugging into
u(t+h,x) —u(t,x) _ Du(t,x +a) — 2u(t,x) + u(t,x — a)
h B a? |
one gets
u(t + h,x) = [1 — 4rsin®(ka/2)]ci(t)e™
l.e.

ci(t 4+ h) = [1 — 4rsin?(ka/2)]ck(t), cftt = [1 — 4rsin®(ka/2)]"c?

The method is stable if r<1/2

Try a larger space step to compensate for large time step

Constants

L = 0.01 # Thickness of steel in meters
D = 4.25e-6 # Thermal diffusivity

N = 90 # Number of divisions in grid
a = L/N # Grid spacing

h = 1.2e-3 # Time-step (in s)

Solving the heat equation with FTCS scheme
r = hxD/a”2 = 0.41309999999999986

Heat equation

50 A — t=0.01s
— t=0.1s
— t=04s
40 — t=1.0s
— t=10.0s
7 30 1
=
(2]
o
2
~ 204
10 A
0-.
0.000 0.002 0.004 0.006 0.008 0.010

x[cm]

Implicit scheme

ou_ P

o oax2
Time derivative approximated by backward difference

ou(t+ h,x) u(t+h,x)—ult,x)
ot ~ h

This gives the following discretized PDE

u(t + h, x) —u(t, x) _Du(t+h,x+a)—2u(t+h,x)+u(t+h,x—a)
h - 2

Discretized form

et =+ r (g - 20+ ut), k=1...N-1
Tridiagonal system of linear equations at each step

—ruth A (U2 - = wg, k=1..N -1

Neumann stability analysis: method is stable for any r

Implicit scheme for heat equation

ou u
— =D —,
ot 0x?
Single iteration of the FTCS scheme in the time direction
The new field is written into unew) .) .
r = Dh/a~2 is the dimensionless parameter # Perform nsteps FTCS time iterations for the heat equation
def heat_implicit_iteration(u, r): # u@: the initial profile
N = len(u) -1 # h: the size of the time step

nsteps: number of time steps
a: the spatial cell size
D: the diffusion constant

unew = np.empty_like(u)

Boundary conditions

unew[0] = ul0] def heat_implicit_solve(u®, h, nsteps, a, D = 1.):
unew[N] = u[N] u = u0.copyl()
r=nhxD / axx2
d = np.full(N-1, 142.xr) # print(“Heat equation with r =", r)
ud = np.full(N-1, -r) for i in range(nsteps):
ld = np.full(N-1, -r)

u = heat_implicit_iteration(u, r)
np.array(u[1:N])

v([o] += r % u[0]
vIN-2] += r *x u[N] return u
unew[1:N] = linsolve_tridiagonal(d, ld,ud,v)

return unew

Implicit scheme: large time step

Solving the heat equation with implicit scheme
r = hxD/a”2 = 4.25
Heat equation

50 -

40 -

30 -

T [Celsius]

10 A

0.004 0.006 0.008 0.010

0.000 0.002
x [cm]

Crank-Nicolson scheme

ou_ P

o ox

“Average” between forward and backward difference

du(t, x) ~ l D Pu(t + h, x) +
ot 2 0x?2

D

ult, x)l
0x2

Essentially a trapezoidal rule for the time integration (more accurate than forward/backward
differences)

Discretized form

u(t+h,x) —u(t,x) 2u(t+h,x+a)—2u(t+h,x)+u(t+h,x—a)+ 2u(t,x+a)—2u(t,x)+u(t,x—a)
h T2 a? 2 a |

Tridiagonal system of linear equations at each step:

—ruty + 200+ utt -y = + 20 - + iy, k=1..N-1

Neumann stability analysis: method is stable for any r

Crank-Nicolson scheme: large time step

Solving the heat equation with Crank-Nicolson scheme
r = hxD/a”2 = 4.25
Heat equation

50 A

40 -

w
o
1

T [Celsius]

N
o
1

10 A

0.002 0.004 0.006 0.008 0.010

0.000
x [cm]

Heat equation in two dimensions

In two dimensions, the heat equation reads:

ou 0%u 0%u
— =D |—+ —]|.
ot ox? 0y?

This equation describes the time evolution of u(t, x, y) given the initial profile and boundary conditions:

, u(t,x =0,y) = wet(t;),
ut =0, x,y) = uy(x, y), u(t,x = L, y) = usign(t; y),
U(t, X = 09 y) = ubottom(t; X),
ut,x = L, y) = up(t; x).

Now, we perform discretization in both x and y directions. Taking the same step size a in both directions, we
obtain the following discretized FTCS scheme:

W = b @ = 2U U), =2), i=1..N—-1, j=1..M-1.
Here, as before:
Dh
r= a—z, N—_-Lx/a,M=Ly/a,

and

u;’,j = u(t + hn, ai, aj).

Heat equation in two dimensions: FTCS scheme

Single iteration of the 2D FTCS scheme in the time direction
r = Dh/a~2 is the dimensionless parameter
def heat_FTCS_iteration_2D(u, r):

N, M = u.shape

unew = np.empty_like(u)

Boundary conditions
unew[0, :]1 =ul[0, :]

unew [N-1, :1] = u[N-1, :]
unew|[:, 0] =ul :, 0]
unew([:, M-1] = u[:, M-1]

FTCS scheme
for i in range(1, M-1):
for j in range(1, N-1):
unew[i, jl = uli, jl + r * (uli+1l, j] - 2 % uli, j1 + uli-1, j1) + r % (uli, j+11 - 2 % uli, jl + uli,

return unew

Perform nsteps 2D FTCS time iterations for the heat equation
u0: the initial profile
h: the size of the time step
nsteps: number of time steps
a: the spatial cell size
D: the diffusion constant
def heat_FTCS_solve_2D(u@, h, nsteps, a, D = 1.):
u = ud.copyl()
r=nhxD / axx2
for i in range(nsteps):
u = heat_FTCS_iteration_2D(u, r)

return u

Heat equation in two dimensions: FTCS scheme

Heat equation
t=0.007s

0.010

0.008

0.006

0.004

0.002

0.000
0.000 0.002 0.004 0.006 0.008 0.010

Wave equation

The wave equation is an example of a second-order linear PDE describing waves and standing wave fields.
In one dimension, it reads:

2 2
P _ ,,2%. wave equation
or? 0x?

Since it is a second-order PDE, it is supplemented by initial conditions for both ¢(t = 0,x) and ¢; (t = 0,x):

¢t =0, x) = ¢o(x),
¢i(t =0, x) = ¢p(x).

initial conditions

The boundary conditions can be either Dirichlet,

6, x = 0) = drere (1), boundary conditions (Dirichlet)
¢, x = L) = rigni (?),

or Neumann,

¢x(t, x = 0) = Pl (1),

boundary conditions (Neumann)
@x(t, x = L) = P (1),

We shall focus on the Dirichlet form.

Finite difference approach

Finite Difference Approach

To deal with the second-order time derivative, we denote:

_ 99
vt x) = P

This way, we are dealing with a system of first-order (in t) PDEs:

o

= = t’ ’
ot w(t, x)
oy _ ,0%¢
—_— = —.
ot 0x2

To apply the finite difference method, we first approximate the derivative 3¢ /0x? by the lowest-
order central difference, just like for the heat equation:

Pt x) Pt x + a) — 2¢(t, x) + p(t, x — a)
ox2 a? '
To solve the PDEs numerically, we apply the same procedure as for the heat equation, but for ¢(t,x) and
W(t, x) simultaneously.

it =g + hy, é(t = nh, x = ka) = ¢!

FTCS scheme: * ‘ ’))

Wave equation

Single iteration of the FTCS scheme in the time direction
h is the time step
r = Dh/a~2 is the dimensionless parameter

def wave_FTCS_iteration(phi, psi, h, r): # Perform nsteps FTCS time iterations for the heat equation
N = len(phi) -1 # u0: the initial profile
h: the size of the time step
phinew = np.empty_like(phi) # nsteps: number of time steps
psinew = np.empty_like(psi) # a: the spatial cell size
s e # D: the diffusion constant
Qoundary_conqltlons (here static Dirichlet) def wave_FTCS_solve(phi@, psi0, h, nsteps, a, v = 1.):
phinew[0] = phi[0] . .
phinew[N] = phi[N] phi = ph}@.copy()
psinew[0] = 0. psi = psi0.copy()
psinew[N] = 0. r=nh % vkk2 / ax%2
for i in range(nsteps):

P phi, psi = wave_FTCS_iteration(phi, psi, h, r)
scheme
for i in range(1,N): . .
phinew[i] = philil + h % psilil return phi, psi
psinew[i] = psil[i] + r * (phi[i+1] - 2 % phi[i] + phi[i-1])

return phinew, psinew

Wave equation

Constants

L=1 # Length

v =20.1 # Wave propagation speed

N = 100 # Number of divisions in grid
a=L/N # Grid spacing

h = 1le-2 # Time-step

print("Solving the wave equation with FTCS scheme")
print("r = hxv~2/a”2 =", hxvk*x2/ax%2)

Initialize
phi = np.array([np.sin(k#np.pi/N) for k in range(N+1)])
psi = np.zeros([N+1],float)

FTCS scheme is unstable

Displacement

Wave equation with FTCS scheme

1.00 A

0.75 A

0.50 A

0.25 A

0.00 ~

—0.25 -

—0.50 -

—0.75 -

—1.00 -

t=1.0
t=5.0

t=10.0
t=18.0

0.0

0.2

0.4

0.6

0.8

1.0

Wave equation

Wave equation

t=0.140
Constants 1.00 1 — FTCS
L=1 # Length
v =0.1 # Wave propagation speed 0.75 1
N = 100 # Number of divisions in grid 0.50
a = L/N # Grid spacing '
h = le-2 # Time-step £ 0251

[
print("Solving the wave equation with FTCS scheme") § 0.00 -
print("r = hxv~2/a”2 =", hxvkx2/a**2) 2

8 -0.25 1

-0.50
Initialize o5
phi = np.array([np.sin(kxnp.pi/N) for k in range(N+1)]) '
psi = np.zeros([N+1], float) ~1.00 1
0.0 0.2 0.4 0.6 0.8

FTCS scheme is unstable

Wave equation: other schemes

Implicit Scheme

Ot = ¢ + hyt,
vt =T @ -2), k=1..N -1

Substituting the first equation into the second one gives the tridiagonal system of linear equations for Yi*1:

—rhyt + (1 + 2rh)y ! — rhy !t =yl 4 r (@), =200 + 1), k=1..N-1

Stable, but has exponential decay (waves don't propagate forever)

Crank-Nicolson Scheme
B = o+ vt + gl
Vit =4 S @G 200 D+ S B — 205+ H). k=1..N-L.
n+1:

Substituting the first equation into the second one gets the tridiagonal system of linear equations for

—rhy !t 4 21+)yt — rhy Y = 2t 4 2 (@, = 200 + G0) +rh(wl, — 2w+l), k=1..N-1

Stable, no growth or decay

Wave equation with Crank-Nicolson scheme

Wave equation with Crank-Nicolson scheme

1.00 A —_ t=1.0
— t=5.0
0.75 - — t=10.0
— t=20.0
0.50 - — t=190.0
— t=290.0
2 0.25 -
Q
=
Y 0.00 -
[4+]
-
(7]
A —-0.25
—0.50 -
—0.75 -
—1.00 -
0.0 0.2 0.4 0.6 0.8 1.0

Wave equation: Comparison

Displacement

1.00 A

0.75 A

0.50 A

0.25 A

0.00 A

—0.25 A

—0.50 A

—0.75 A

—1.00 A

Wave equation

t=1.340

— FTCS
—— Implicit
—— Crank-Nicolson

0.0 0.2 0.4 0.6

0.8

1.0

Wave equation: Pulses

Wave equation

t=0.001
— FTCS
0.0004
0.0002 -
o
[=4
[}
E /—\
Y 0.0000 -
©
&
@
=)
—0.0002
—0.0004 -
0.0 0.2 0.4 0.6 0.8 1.0

Wave equation: Pulses

Wave equation Wave equation
t=0.001 t=0.001
— FICS — FTCS
0.0004 - 0.0004 - —— Implicit
—— Crank-Nicolson
0.0002 A 0.0002 -
- -
[=4 =4
[7] 7]
Y 0.0000 A Y 0.0000 A
© ©
o o
%] %]
3 3
—0.0002 A —0.0002 A
—0.0004 A —0.0004 A
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8

Summary

Scheme Complexity Stability Accuracy

Heat eq.: Conditionally

stable
FTCS Explicit Wave Eq.: Unstable Exponential explosion
Implicit Tridiagonal SLE Stable Exponential decay
Crank-Nicholson |Tridiagonal SLE Stable Conserves wave amplitude

