
Computational Physics (PHYS6350)
Lecture 16: Partial Differential Equations Part II

• Initial value problems
• Heat equation
• Wave equation

Reference: Chapter 9 of Computational Physics by Mark Newman
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Course materials: https://github.com/vlvovch/PHYS6350-ComputationalPhysics
Online textbook: https://vovchenko.net/computational-physics/

mailto:vvovchenko@uh.edu
https://github.com/vlvovch/PHYS6350-ComputationalPhysics
https://vovchenko.net/computational-physics/


Many PDEs describe time evolution of fields u(t,x)

Initial value problem in PDEs

For example heat equation describing the temperature profile

This equation describes the time evolution of u(t,x) given initial profile

and boundary conditions

If boundary conditions are static, the solution will approach a stationary profile 
at large times



First, one discretizes the spatial coordinate into a grid with N+1 points, i.e. 

Finite difference approach to heat equation

The spatial 2nd derivative is approximate with central difference

How to discretize time derivative?

Three common options:

• FTCS scheme
• Implicit scheme
• Crank-Nicolson method



FTCS (Forward Time Centered Space) scheme

Finite difference approach to heat equation: FTCS scheme

Time derivative approximated by forward difference

This gives the following discretized PDE

The method is explicit: to evaluate u(t+h,x) one only needs u(t,x) at the present time

Discretized form



FTCS scheme for heat equation



Example
Let us consider Example 9.3 from M. Newman, Computational Physics:

We have a 1 cm long steel container, initially at a temperature 20° C. It is placed in a bath of cold water at 0° C and filled 
on top with hot water at 50° C. Our goal is to calculate the temperature profile as a function of time. The thermal 
diffusivity constant for stainless steel is D = 4.25 ! 10-6 m² s⁻¹.

We will calculate the profile at times t = 0.01 s, 0.1 s, 0.4 s, 1 s, and 10 s.



Animation
Let us consider Example 9.3 from M. Newman, Computational Physics:

We have a 1 cm long steel container, initially at a temperature 20° C. It is placed in a bath of cold water at 0° C and filled 
on top with hot water at 50° C. Our goal is to calculate the temperature profile as a function of time. The thermal 
diffusivity constant for stainless steel is D = 4.25 ! 10-6 m² s⁻¹.

We will calculate the profile at times t = 0.01 s, 0.1 s, 0.4 s, 1 s, and 10 s.



Try a larger time step

The method is unstable if r > 0.5



Stability analysis: Neumann method

Recall Fourier transform u t, x = ∑! 𝑐!(𝑡) 𝑒"!#

Analyze the following solutions: u t, x = 𝑐!(𝑡)𝑒"!#

Plugging into

one gets

i.e.

The method is stable if r<1/2



Try a larger space step to compensate for large time step



Implicit scheme

Time derivative approximated by backward difference

This gives the following discretized PDE

Discretized form

Tridiagonal system of linear equations at each step

Neumann stability analysis: method is stable for any r



Implicit scheme for heat equation



Implicit scheme: large time step



Crank-Nicolson scheme

“Average” between forward and backward difference

Essentially a trapezoidal rule for the time integration (more accurate than forward/backward 
differences)

Discretized form

Tridiagonal system of linear equations at each step:

Neumann stability analysis: method is stable for any r



Crank-Nicolson scheme: large time step



Heat equation in two dimensions

In two dimensions, the heat equation reads:

This equation describes the time evolution of u(t, x, y) given the initial profile and boundary conditions:

Now, we perform discretization in both x and y directions. Taking the same step size a in both directions, we 
obtain the following discretized FTCS scheme:

Here, as before:

and



Heat equation in two dimensions: FTCS scheme



Heat equation in two dimensions: FTCS scheme



Wave equation

The wave equation is an example of a second-order linear PDE describing waves and standing wave fields. 
In one dimension, it reads:

Since it is a second-order PDE, it is supplemented by initial conditions for both 𝜙(𝑡	 = 	0, 𝑥) and 𝜙$% 	(𝑡	 = 	0, 𝑥):

The boundary conditions can be either Dirichlet,

or Neumann,

We shall focus on the Dirichlet form.

wave equation

initial conditions

boundary conditions (Dirichlet)

boundary conditions (Neumann)



Finite difference approach

Finite Difference Approach
To deal with the second-order time derivative, we denote:

This way, we are dealing with a system of first-order (in t) PDEs:

To apply the finite difference method, we first approximate the derivative 𝜕&𝜙/𝜕𝑥& by the lowest-
order central difference, just like for the heat equation:

To solve the PDEs numerically, we apply the same procedure as for the heat equation, but for 𝜙(𝑡, 𝑥) and 
𝜓(𝑡, 𝑥) simultaneously.

FTCS scheme:



Wave equation



Wave equation

FTCS scheme is unstable



Wave equation

FTCS scheme is unstable



Wave equation: other schemes

Stable, but has exponential decay (waves don’t propagate forever)

Stable, no growth or decay

Implicit Scheme

Substituting the first equation into the second one gives the tridiagonal system of linear equations for 𝜓!'():

Crank-Nicolson Scheme

Substituting the first equation into the second one gets the tridiagonal system of linear equations for 𝜓!'():



Wave equation with Crank-Nicolson scheme



Wave equation: Comparison



Wave equation: Pulses



Wave equation: Pulses



Summary

Scheme Complexity Stability Accuracy

FTCS Explicit

Heat eq.: Conditionally 
stable 

Wave Eq.: Unstable Exponential explosion

Implicit Tridiagonal SLE Stable Exponential decay

Crank-Nicholson Tridiagonal SLE Stable Conserves wave amplitude


