
Computational Physics (PHYS6350)
Lecture 7: Non-linear equations and root-finding: Part 2

• Roots of polynomials
• Systems of non-linear equations
• Function extrema

Instructor: Volodymyr Vovchenko (vvovchenko@uh.edu)
Course materials: https://github.com/vlvovch/PHYS6350-ComputationalPhysics
Online textbook: https://vovchenko.net/computational-physics/
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Roots of polynomials

References: Chapters 5.1, 9.5 of Numerical Recipes Third Edition by W.H. Press et al.



Roots of polynomials

So far we’ve dealt with polynomials 
with one real root, such as

Other polynomials (e.g. Legendre 
polynomials) have multiple real roots, 
and we need to calculate them all



Preliminaries: evaluating polynomials efficiently

A polynomial can typically be written as

or, equivalently, as

which allows one to evaluate both the polynomial and its derivative efficiently



Preliminaries: multiplying and dividing a polynomial

Easy to see that

Inverting these relations defines the division of !𝑃(𝑥) by (x-c)

Multiply                     by            to get 

Multiplication:

Division:

Note that the division only makes sense when x=c is a root of !𝑃(𝑥) 



Roots of Legendre polynomials

Roots of Legendre polynomials 𝑃!(𝑥) play an important role e.g. for numerical 
integration using quadratures 

Each 𝑃!(𝑥) has n real roots in the interval x = -1…1

Consider

How to evaluate its six roots accurately?



Roots of Legendre polynomials

Strategy 1: Bracket each root from visual analysis and use the bisection method 
for refinement
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Roots of Legendre polynomials

Strategy 1 is fairly fail-safe but requires significant manual pre-processing

Strategy 2:

1. Use one of the standard methods (e.g. Newton-Raphson) to find the first root x1 
2. Divide the polynomial by (x-x1)
3. Apply Newton’s method to the new polynomial to find x2
4. Divide the polynomial by (x-x2) and repeat the above steps until all roots are found 

Optional optimization:
Refine the roots by applying Newton-Raphson method again to the original 
polynomial, using the tentative roots as initial guesses
This helps to mitigate round-off error accumulation inherent in polynomial division



Roots of Legendre polynomials

Using strategy 2, initial guess x0 = -1
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Roots of Legendre polynomials
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Roots of Legendre polynomials

Same procedure for 𝑃"(𝑥)

Try to go higher order? How high can we go?



Systems of non-linear equations

References: Chapter 9.6 of Numerical Recipes Third Edition by W.H. Press et al.



Systems of non-linear equations

Often, we need to solve a system of coupled non-linear equations, e.g.

For example:

i.e.

Vector notation: f = (f1,…,fN) and x = (x1,…,xN)



Newton-Raphson method in multiple dimensions

In 1D reduces to Newton-Raphson:

We have a system on non-linear equations f(x) = 0
Taylor expansion around the root x* reads (multi-variate calculus)

𝒇 𝒙∗ ≈ 𝒇 𝒙 + 𝑱 𝒙 (𝒙∗ − 𝒙) 1D: 𝑓 𝑥∗ ≈ 𝑓 𝑥 + 𝑓" 𝑥 (𝑥∗ − 𝑥)

𝐉 𝐱  is the Jacobian, i.e. a NxN matrix of derivatives evaluated at x:

𝐽#$ =
𝜕𝑓#
𝜕𝑥$

𝐟 𝒙∗ = 𝟎 𝑱 𝒙 𝒙∗ − 𝒙 ≈ −𝒇 𝒙 𝒙∗ ≈ 𝑥 − 𝑱%𝟏 𝒙 	𝒇 𝒙

The multi-dimensional Newton’s method is an iterative procedure:
𝑥'() = 𝑥' − 𝑱%𝟏 𝒙𝒏 	𝒇 𝒙𝒏



Newton-Raphson method in multiple dimensions



Newton-Raphson method in multiple dimensions

Introduce an objective function

Its value is equal to zero (minimized) at the root



Newton-Raphson method in multiple dimensions



Broyden method

Broyden method is a multi-dimensional generalization of the secant method

Secant method (1D): with

Broyden method: with

The solution for J(xn) is not unique

Broyden: with

Initial Jacobian 𝐽#:
• Calculate the Jacobian J(x0)
• Initialize with Identity matrix J(x0) = I

requires derivative but more accurate
no derivative but can converge slower



Broyden method (direct)



Broyden method: avoid matrix inversion

Sherman-Morrison formula:

Update the inverse Jacobian directly!



Broyden method (Sherman-Morrison)



Broyden method vs Newton-Raphson method

Broyden method converges somewhat slower (e.g. 54 vs 12 iterations 
in our example) but:

• Does not involve the calculation of Jacobian

• Does not involve matrix inversion

Possible refinement: improve the initial estimate for the Jacobian



Function minimization/maximization

References: Chapter 6.4 of Computational Physics by Mark Newman
Chapter 10 of Numerical Recipes Third Edition by W.H. Press et al.



Function extrema

Often we are interested to find the minimum of a function (e.g. energy minimization)

Consider the minimum of f(x) = sin(x) on interval 0..2𝜋



Golden section search

1. Bracket the minimum xmin in (a,b)
2. Take c = b – (b-a)/𝜑 and d = a + (b-a)/𝜑
3. If f(c)<f(d), take b = d as new right endpoint
4. Otherwise, take a = c as new left endpoint
5. Repeat over the new, smaller interval (a,b) 

until the desired accuracy is reached

𝜑 =
1 + 5
2 = 1.618… is the golden ratio

This value ensures that the interval decreases by factor 𝜑 in each iteration 
no matter what

The method works when the function is unimodal



Golden section search

To search for a maximum of f(x) look for a minimum of –f(x)



Newton-Raphson method

The extremum of f(x) is the root of the derivative, 𝑓$ 𝑥 = 0

Simply apply Newton-Raphson method (or one other standard methods) for 
finding the root of 𝑓$ 𝑥



Gradient descent method

Replace, 𝑓′$ 𝑥  by a descent factor 1/𝛾!

Freedom in choosing 𝛾!

Can be generalized to multi-variable function F(x1,x2,...) final project idea(?)

𝛾' > 0 (minimum)

𝛾' < 0 (minimum)


