b]

Computational Physics (PHYS6350)

Lecture 7: Non-linear equations and root-finding: Part 2

* Roots of polynomials
» Systems of non-linear equations
* Function extrema

Instructor: Volodymyr Vovchenko (vvovchenko@uh.edu)

Course materials: https://github.com/vlvovch/PHYS6350-ComputationalPhysics
Online textbook: https://vovchenko.net/computational-physics/

mailto:vvovchenko@uh.edu
https://github.com/vlvovch/PHYS6350-ComputationalPhysics
https://vovchenko.net/computational-physics/

Roots of polynomials

Ps(x)

References: Chapters 5.1, 9.5 of Numerical Recipes Third Edition by W.H. Press et al.

Roots of polynomials

So far we've dealt with polynomials Other polynomials (e.g. Legendre
with one real root, such as polynomials) have multiple real roots,

3 and we need to calculate them all
x>—x—1=0

1.00 A

0.75 1

0.50 1

0.25 1

0.00 1

—0.25 1

X —-1.00 —=0.75 —0.50 —=0.25 0.00 0.25 0.50 0.75 1.00

Preliminaries: evaluating polynomials efficiently

A polynomial can typically be written as

n

P(x)=2ajxj

j=0

or, equivalently, as

P(x) = ag + x(a; + x(...))

which allows one to evaluate both the polynomial and its derivative efficiently

def Poly(x,a): # Evaluate the derivative of a polynomial
ret = a[len(a) - 1] # with coefficients a at a point x
for j in range(len(a) - 2, -1, -1): def dPoly(x,a):

p = a[len(a) - 1]

dp = 0.

for j in range(len(a) - 2, -1, -1):
dp =dp * x + p
p=p*x+alj]

return dp

ret = ret * x + a[j]
return ret

Preliminaries: multiplying and dividing a polynomial

Multiplication:
n n+1
Multiply P(x) = Z ajx’ by (x—c) toget P(x)=(x—-c)P(x) = Z a;x’.
J=0 Jj=0 : :
Multiply polynomial by (x - c)
def PolyMult(a,c):
Easy to see that n = len(a)
ret = a[:]
ret.append(ret[-1])
35 — n 5. — .4 — . | —]_ ...n]_ for j in range(n-1,0,-1):
0 cdo, and dj = 4aj-1— ¢4 J e MF ret[j] = ret[j-1] - ¢ * ret[j]
ret[@0] = -c * ret[0]
return ret
Division:

Inverting these relations defines the division of P(x) by (x-c) T T R

assuming x = c 1s one of the roots
def PolyDiv(a,c):
aj=aj+caj, j=0,....n el
ret[-1] = @.
for j in range(n-1,-1,-1):
L. . ~ ret[j] = a[j+1] + ¢ * ret[j+1]
Note that the division only makes sense when x=c is a root of P(x) ret.pop()

return ret

Roots of Legendre polynomials

Roots of Legendre polynomials P, (x) play an important role e.g. for numerical
integration using quadratures

Each P,(x) has n real roots in the interval x = -1..1

Consider

1
Po(x) = 15 (231x° — 315x* + 105x* — 5)

Pes(x)

How to evaluate its six roots accurately?

Roots of Legendre polynomials

Strategy 1: Bracket each root from visual analysis and use the bisection method
for refinement

Ps(x)

Roots of Legendre polynomials

Strategy 1: Bracket each root from visual analysis and use the bisection method

for refinement

xroots = []

Root 1

xleft = -1.

xright = -0.75
xroots.append(bisection_method(fP6,xleft,xright))
print("Root 1 between", xleft, "and", xright, "is
xleft = -0.75

xright = -0.5
xroots.append(bisection_method(fP6,xleft,xright))
print("Root 2 between", xleft, "and", xright, "is
xleft = -0.5

xright = 0.
xroots.append(bisection_method(fP6,xleft,xright))
print("Root 3 between", xleft, "and", xright, "is
xleft = 0.

xright = 0.5
xroots.append(bisection_method(fP6,xleft,xright))
print("Root 4 between", xleft, "and", xright, "is
xleft = 0.5

xright = 0.75
xroots.append(bisection_method(fP6,xleft,xright))
print("Root 5 between", xleft, "and", xright, "is
xleft = 0.75

xright = 1.
xroots.append(bisection_method(fP6,xleft,xright))
print("Root 6 between", xleft, "and", xright, "is

",xroots[-1])

",xroots[-1])

",xroots[-1])

",xroots[-1])

",xroots[-1])

",xroots[-1])

Ps(x)

Roots of Legendre polynomials

Strategy 1: Bracket each root from visual analysis and use the bisection

for refinement

xroots = []

Root 1

xleft = -1.

xright = -0.75
xroots.append(bisection_method(fP6,xleft,xright))
print("Root 1 between", xleft, "and", xright, "is
xleft = -0.75

xright = -0.5
xroots.append(bisection_method(fP6,xleft,xright))
print("Root 2 between", xleft, "and", xright, "is
xleft = -0.5

xright = 0.
xroots.append(bisection_method(fP6,xleft,xright))
print("Root 3 between", xleft, "and", xright, "is
xleft = 0.

xright = 0.5
xroots.append(bisection_method(fP6,xleft,xright))
print("Root 4 between", xleft, "and", xright, "is
xleft = 0.5

xright = 0.75
xroots.append(bisection_method(fP6,xleft,xright))
print("Root 5 between", xleft, "and", xright, "is
xleft = 0.75

xright = 1.
xroots.append(bisection_method(fP6,xleft,xright))
print("Root 6 between", xleft, "and", xright, "is

",xroots[-1])

",xroots[-1])

",xroots[-1])

",xroots[-1])

",xroots[-1])

",xroots[-1])

Ps(x)

method

Root
Root
Root
Root
Root
Root

AUV h WNBRE

between
between
between
between
between
between

-1.0 and -0.75 is x
-0.75 and -0.5 is x
-90.5 and 0.0 is x =

-0.9324695142277051
-0.6612093864532653
-0.23861918607144617

0.0 and 0.5 is x = 0.23861918607144617

0.5 and 0.75 is x =
0.75 and 1.0 is x =

0.6612093864532653
0.9324695142277051

Roots of Legendre polynomials

Strategy 1 is fairly fail-safe but requires significant manual pre-processing

Strategy 2:

1. Use one of the standard methods (e.g. Newton-Raphson) to find the first root x;
2. Divide the polynomial by (x-x;)

3. Apply Newton's method to the new polynomial to find x,

4. Divide the polynomial by (x-x,) and repeat the above steps until all roots are found

Optional optimization:

Refine the roots by applying Newton-Raphson method again to the original
polynomial, using the tentative roots as initial guesses

This helps to mitigate round-off error accumulation inherent in polynomial division

Roots of Legendre polynomials

Using strategy 2, initial guess x, = -1

1.0
def PolyRoots(0.8
a, # The coefficients of the polynomial that we are solving ’
x0 = -1., # The initial guess for the first root
accuracy = l.e-10, # The desired accuracy of the solution 0.6¢
polishing = True, # Whether to polish the roots further with Newton's method
max_iterations = 100 # Maximum number of iterations in Newton's method 0.4
e x
ret = [] a 0.2
n = len(a)
apoly = a[:]
current_root = x0 0.0
def f(x): -0.2
return Poly(x,apoly)
def df(x): -0.4
return dPoly(x,apoly)

—~1.00-0.75-0.50-0.25 0.00 0.25 0.50 0.75 1.00

print("Searching all the roots using deflation and the Newton's method") X
Loop over all the roots
for k in range(@,n-1,1):

current_root = newton_method(f,df,current_root,accuracy,max_iterations)

if (current_root == None): Searching all the roots using deflation and Newton's method
print("Failed to find the next root!") Root 1 is x = -0.932469514203152
break

ret.append(current_root)

print("Root ", k+1, "is x = ",current_root)

Deflate the polynomial
apoly = PolyDiv(apoly, current_root)

return ret

Roots of Legendre polynomials

Using strategy 2, initial guess x, = -1

def PolyRoots(
a, # The coefficients of the polynomial that we are solving
x0 = -1., # The initial guess for the first root
accuracy = l.e-10, # The desired accuracy of the solution
polishing = True, # Whether to polish the roots further with Newton's method
max_iterations = 100 # Maximum number of iterations in Newton's method

ret = []

n = len(a)

apoly = a[:]
current_root = x0

def f(x):

return Poly(x,apoly)
def df(x):

return dPoly(x,apoly)

print("Searching all the roots using deflation and the Newton's method")
Loop over all the roots
for k in range(@,n-1,1):
current_root = newton_method(f,df,current_root,accuracy,max_iterations)

if (current_root == None):
print("Failed to find the next root!")
break

ret.append(current_root)

print("Root ", k+1, "is x = ",current_root)

Deflate the polynomial
apoly = PolyDiv(apoly, current_root)

return ret

1.0

P(x)

~1.00-0.75-0.50-0.25 0.00 0.25 0.50 0.75 1.00
X

Searching all the roots using deflation and Newton's method
Root 1 is x = -0.932469514203152
Root 2 is x = -0.6612093864662645

Roots of Legendre polynomials

Using strategy 2, initial guess x, = -1

def PolyRoots(

a, # The coefficients of the polynomial that we are solving
x0 = -1., # The initial guess for the first root
accuracy = l.e-10, # The desired accuracy of the solution
polishing = True, # Whether to polish the roots further with Newton's method
max_iterations = 100 # Maximum number of iterations in Newton's method
): ™
ret = [] a
n = len(a)
apoly = a[:]
current_root = x0
def f(x):
return Poly(x,apoly)
def df(x):

return dPoly(x,apoly) L
—-1.00-0.75-0.50-0.25 0.00 0.25 0.50 0.75 1.00
print("Searching all the roots using deflation and the Newton's method") X
Loop over all the roots
for k in range(@,n-1,1):

current_root = newton_method(f,df,current_root,accuracy,max_iterations)

if (current_root == None): Searching all the roots using deflation and Newton's method
print("Failed to find the next root!") Root 1 is X = -90.932469514203152
break Root 2 is x = -0.6612093864662645

ret.append(current_root) Root 3 is x = -0.23861918608319668

print("Root ", k+1, "is x = ",current_root)
Deflate the polynomial
apoly = PolyDiv(apoly, current_root)

return ret

Roots of Legendre polynomials

Using strategy 2, initial guess x, = -1

def PolyRoots(
a, # The coefficients of the polynomial that we are solving
x0 = -1., # The initial guess for the first root
accuracy = l.e-10, # The desired accuracy of the solution
polishing = True, # Whether to polish the roots further with Newton's method
max_iterations = 100 # Maximum number of iterations in Newton's method

ret = []

n = len(a)

apoly = a[:]
current_root = x0

def f(x):

return Poly(x,apoly)
def df(x):

return dPoly(x,apoly)

print("Searching all the roots using deflation and the Newton's method")
Loop over all the roots
for k in range(@,n-1,1):
current_root = newton_method(f,df,current_root,accuracy,max_iterations)

if (current_root == None):
print("Failed to find the next root!")
break

ret.append(current_root)

print("Root ", k+1, "is x = ",current_root)

Deflate the polynomial
apoly = PolyDiv(apoly, current_root)

return ret

1.0

0.8

0.6

P(x)

~1.00-0.75-0.50-0.25 0.00 0.25 0.50 0.75 1.00
X

Searching all the roots using deflation and Newton's method
Root 1 is Xx -0.932469514203152

Root 2 is x = -0.6612093864662645
Root 3 is x = -0.23861918608319668
Root 4 is x = ©.23861918608319652

Roots of Legendre polynomials

Using strategy 2, initial guess x, = -1

1.0
def PolyRoots(08l
a, # The coefficients of the polynomial that we are solving ’
x0 = -1., # The initial guess for the first root
accuracy = l.e-10, # The desired accuracy of the solution 0.61
polishing = True, # Whether to polish the roots further with Newton's method
max_iterations = 100 # Maximum number of iterations in Newton's method 04r
e x
ret = [] a 0.2t
n = len(a)
apoly = a[:]
-o-————9
current_root = x0 0.0
def f(x): -0.2¢
return Poly(x,apoly)
def df(x): 04+
return dPoly(x,apoly)

—~1.00-0.75-0.50-0.25 0.00 0.25 0.50 0.75 1.00

print("Searching all the roots using deflation and the Newton's method") X
Loop over all the roots
for k in range(@,n-1,1):
current_root = newton_method(f,df,current_root,accuracy,max_iterations)
if (current_root == None): Searching all the roots using deflation and Newton's method

print("Failed to find the next root!") Root 1 is X -9.932469514203152
break Root

2 is X = -0.6612093864662645
ret.append(current_root) Root 3 is x = -©.23861918608319668
print("Root ", k+l, "is x = ",current_root) Root 4 is x = 0.23861918608319652
Deflate the polynomial Root 5 is X = ©.6612093864662646

apoly = PolyDiv(apoly, current_root)

return ret

Roots of Legendre polynomials

Using strategy 2, initial guess x, = -1

1.0
def PolyRoots(0sl
a, # The coefficients of the polynomial that we are solving
x0 = -1., # The 1initial guess for the first root
accuracy = l.e-10, # The desired accuracy of the solution 0.61
polishing = True, # Whether to polish the roots further with Newton's method
max_iterations = 100 # Maximum number of iterations in Newton's method 0.4r
): =
ret = [] & 0.2¢1
n = len(a)
apoly = a[:] 00Fe-—-—-—-@--—-——- - - -————— L -
current_root = x© ’
def f(x): -0.2}
return Poly(x,apoly)
def df(x): —-0.4+}
return dPoly(x,apoly)

—~1.00-0.75-0.50-0.25 0.00 0.25 0.50 0.75 1.00

print("Searching all the roots using deflation and the Newton's method") X
Loop over all the roots
for k in range(@,n-1,1):

current_root = newton_method(f,df,current_root,accuracy,max_iterations)

if (current_root == None): Searching all the roots using deflation and Newton's method
print("Failed to find the next root!") Root 1 is X = -0.932469514203152
break Root 2 is x = -0.6612093864662645

PeF-aPEend(CgPPent_Pf?t)) Root 3 is x = -0.23861918608319668

print(“Root ", k+1, "is x = ",current_root) Root 4 is x = 0.23861918608319652

& Dl e peiliiel Root 5 is x = 0.6612093864662646

apoly = PolyDiv(apoly, current_root) Root 6 is x = 0.9324695142031523

return ret

Roots of Legendre polynomials

Using strategy 2, initial guess x, = -1

1.0} — Ps(x)
def PolyRoots(0.8} ® roots
a, # The coefficients of the polynomial that we are solving
x0 = -1., # The initial guess for the first root
accuracy = l.e-10, # The desired accuracy of the solution 0.6r
polishing = True, # Whether to polish the roots further with Newton's method
max_iterations = 100 # Maximum number of iterations in Newton's method —_
) =
ret = [] df
n = len(a)
apoly = a[:]
current_root = x0
def f(x):
return Poly(x,apoly)
def df(x):
return dPoly(x,apoly)

print("Searching all the roots using deflation and the Newton's method") X
Loop over all the roots
for k in range(@,n-1,1):
current_root = newton_method(f,df,current_root,accuracy,max_iterations)
if (current_root == None): Searching all the roots using deflation and Newton's method

print("Failed to find the next root!") Root 1 is x -0.932469514203152
break Root

2 is X = -0.6612093864662645
ret.append(current_root) Root 3 is x = -©.23861918608319668
print("Root ", k+l, "is x = ",current_root) Root 4 is x = 0.23861918608319652
Deflate the polynomial Root 5 is x = 0.6612093864662646
apoly = PolyDiv(apoly, current_root) Root 6 is x = ©.9324695142031523

return ret

Roots of Legendre polynomials

Same procedure for Py(x)

Searching all the roots using deflation and Newton's method

Root
Root
Root
Root
Root
Root
Root
Root
Root

1

VW oONOUVTDA WN

is
is
is
is
is
is
is
is
is

X

X X X X X X X X

-0.9681602395076263
-0.8360311073266355
-0.6133714327005905
-0.3242534234038087
-2.9050086835705924e-16
0.32425342340380925
0.6133714327005846
0.8360311073266581
0.968160239507609

Po(X)

1.00

0.75¢}

0.50
0.25
0.00
-0.25
—-0.50
—~LL7>
—-1.00

Try to go higher order? How high can we go?

w—— PoiX)
roots

T

T

T

T

T

T

1.0

0.5

0.0

0.5

1.0

Systems of non-linear equations
Ji(x1, ..., xn) =0,
fr(xp, ..., xy) =0,

fN(Xl, ,XN) =0

References: Chapter 9.6 of Numerical Recipes Third Edition by W.H. Press et al.

Systems of non-linear equations

Often, we need to solve a system of coupled non-linear equations, e.g.

f1(xy, ... xn) =0,
fZ(xla'“’xN) = 07

fN(Xl,...,XN) =0

Vector notation: f = (f;,..,fy) and x = (x3,..,xy)

fx)=0.

For example: 3f— /

—— fa(x1, x2)
2 L

x+exp(—x)—2—-y=0,

x> =x=-3-y=0.

l.e. !

J1(x1,%x2) = x1 +exp(—=x1) =2 — x;

_ 3 _a_ , , , , , | ,
L2, x0) =x{ = x1 =3 —x 10 -—05 00 05 10 15 20

Newton-Raphson method in multiple dimensions

We have a system on non-linear equations f(x) = 0

Taylor expansion around the root x* reads (multi-variate calculus)

f(x™) = f(x) + J(x)(x* — x) 1ID: f(x") = f(x)+ f'(x)(x* —x)
J(x) is the Jacobian, i.e. a NxN matrix of derivatives evaluated at x:
daf;
Jij = @

f(x)=0 mmm) JOX-0~-fx)) x~x-J1)f@

The multi-dimensional Newton’s method is an iterative procedure:
Xn+1 = Xn —]_1(.76") f(xn)

)
T (x)

In 1D reduces to Newton-Raphson: X,4+1 = X

Newton-Raphson method in multiple dimensions

def newton_method multi(3t
z — fi(x1, x2)
jacobian, — h(x1, x2)
X0, 2+

accuracy=1le-8,
max_iterations=100):
X = X0 1
global last newton_iterations
last_newton_iterations = ©

~ Of

if newton_verbose: X

print("Iteration: ", last_newton_iterations)

print("x = ", x0) —1r

print("f = ", f(x0))

print("|f| = ", ftil(f(x0))) 2L
for 1 in range(max_iterations):

last_newton_iterations += 1 -3t

f val = f(x)

1 1 1 1 1

jac = jacobian(x)

jinv = np.linalg.inv(jac)
delta = np.dot(jinv, -f_val) X1
X = X + delta

10 -05 00 05 10 15 20

Iteration: 12
if np.linalg.norm(delta, ord=2) < accuracy: x = [1.64998819 -9.15795963]
return Xx f = [0.00000000e+00 -6.66133815e-16]
return x |f| = 2.2186712959340957e-31

Newton-Raphson method in multiple dimensions

Introduce an objective function

f(x) - f(x)
2

f(x) =

Its value is equal to zero (minimized) at the root

f(x,y)

2.0 102
1.0
1.0 10!

0.5
> 0.0 10°
-0.5

-1.0 10—1

1072

Newton-Raphson method in multiple dimensions

Newton multi iteration 1

10°

10!

109

107

Broyden method

Broyden method is a multi-dimensional generalization of the secant method

(@) Ty — Ty1

Secant method (1D): @n1 = 2n —

Broyden method: xni1=xa — J 7 '(xa) f(xa) with J(xn) (Xa — Xn_1) >~ f(xn) — f(xn_1)

The solution for J(x,) is not unique

Af, — 3, 1Ax, f, = f£(xn),
Broyden Jp =Jn1 + “Axn”z Ax"r{ W|th Ax, =x, — Xn—1,
Afn - fn - fn—la

Initial Jacobian Jj:
e Calculate the Jacobian J(XO) requires derivative but more accurate
* Initialize with Identity matrix J(xq) = | no derivative but can converge slower

Broyden method (direct)

Direct implementation of Broyden's method

(using matrix inversion at each step)
def broyden_method_direct(

f,

X0,

accuracy=1le-8,

max_iterations=100):

global last_broyden_iterations

last_broyden_iterations = ©

X = X0
n = x0@.shape[9]
J = np.eye(n)

for i in range(max_iterations):
last_broyden_iterations += 1
f val = f(x)
Jinv = np.linalg.inv(3J)
delta = np.dot(Jinv, -f_val)
X = X + delta

if np.linalg.norm(delta, ord=2) < accuracy:

return Xx
f _new = f(x)
= f new - f_val

u
\ delta
J

return Xx

J + np.outer(u - J.dot(v), v) / np.dot(v, v)

Iteration: 54

x = [1.64998819 -0.15795963]

f = [2.97817326e-14 -4.50097265e-10]
|f] = 1.0129377443026415e-19

2.0

Broyden method: avoid matrix inversion

Afn - Jn_lAXn
I, =T 5 3
| A, ||
Sherman-Morrison formula:
Ax, — J1 Af,
J1=31 4+ — CAXTIL
AxEJ,;flAfn

Update the inverse Jacobian directly!

Broyden method (Sherman-Morrison)

def broyden_method(
f,
X0,
accuracy=1le-8,
max_iterations=100):
global last_broyden_iterations
last_broyden_iterations = ©
X = X0
n = x0.shape[9]
Jinv = np.eye(n)

for i in range(max_iterations):

last_broyden_iterations += 1

f val = f(x)

delta = -Jinv.dot(f_val)

X = X + delta

if np.linalg.norm(delta, ord=2) < accuracy:
return X

f _new = f(x)

df = f_ new - f_val

dx = delta

Jinv = Jinv + np.outer(dx - Jinv.dot(df), dx.T.dot(Jinv))

/ np.dot(dx.T, Jinv.dot(df))

return x

1 1

1

10 -05 00 05
X

Iteration: 54

x = [1.64998819 -0.15795963]

f = [2.8255176e-14 -3.8877096e-10]
|f|] = 7.557143001803891e-20

1.0

1.5

2.0

Broyden method vs Newton-Raphson method

Broyden method converges somewhat slower (e.g. 54 vs 12 iterations
in our example) but:

e Does not involve the calculation of Jacobian

e Does not involve matrix inversion

Possible refinement: improve the initial estimate for the Jacobian

Iteration: 54 Iteration: 15

x = [1.64998819 -0.15795963] x = [1.64998819 -0.15795963]

f = [2.8255176e-14 -3.8877096e-10] - f = [1.02683695e-11 1.31871458e-11]
|f| = 7.557143001803891e-20 |f| = 1.3967011340731408e-22

Function minimization /maximization

1.0 4
0.5 A
0.0 -
xl X2 1 u
—0.5
-1.04 9geodose.com

0 1 2 3 4 5 6

References: Chapter 6.4 of Computational Physics by Mark Newman
Chapter 10 of Numerical Recipes Third Edition by W.H. Press et al.

Function extrema

Often we are interested to find the minimum of a function (e.g. energy minimization)

Consider the minimum of f(x) = sin(x) on interval 0..2m

1.00 ¢
0.75}
0.50¢}
0.25}

sin(x)

0.00}
—-0.25¢
—0.50
—-0.75¢

—1.00+

Golden section search

Bracket the minimum x_.. in (a,b)
Takec =b - (b-a)/p andd = a + (b-a)/¢ ‘
If f(c)<f(d), take b = d as new right endpoint

Otherwise, take a = c as new left endpoint

>

ok w -

Repeat over the new, smaller interval (a,b)
until the desired accuracy is reached

1 + '\/5 . - (il (cl b
¢ =——=1618.. s the golden ratio

This value ensures that the interval decreases by factor ¢ in each iteration
no matter what

The method works when the function is unimodal

Golden section search

Golden Section Search: Iteration 1

1.00+

def gss(f, a, b, accuracy=le-7):
c=b-(b-a)/ phi 0.75¢
d=a+ (b-a)/ phi

while abs(b - a) > accuracy: 0.50f
if f(c) < f(d): 0.25r

b =d
else: 0.00
a=c —-0.25¢
c=b-(b-a)/ phi —0.50
d=a+ (b -a)/ phi _0.751

' X1 =3.141592653589793

return (b + a) / 2 —-1.00¢

o 1 2 3 4 5 6
The minimum of sin(x) over the interval (0.0 , 6.283185307179586) is 4.712388990891052

To search for a maximum of f(x) look for a minimum of —f(x)

Newton-Raphson method

The extremum of f(x) is the root of the derivative, f'(x) =0

Simply apply Newton-Raphson method (or one other standard methods) for

finding the root of f'(x)
f'(xn)

Xn+1 — Xnp —

"
F(xn)
f"(x) > 0, — minimum
f(x) <0, — maximum
def newton_extremum(f, df, d2f, x@, accuracy=le-7, max_iterations=100):
Xprev = xXnew = X0
for 1 in range(max_iterations):

xnew = Xxprev - df(xprev) / d2f(xprev)

if (abs(xnew-xprev) < accuracy):
return Xxnew

Xprev = Xhew
return Xxnew

An extremum of sin(x) using Newton's method starting from x0 = 5.0 is (0.0 , 6.283185307179586) is 4.71238898038469

Gradient descent method

Replace, f''(x) by a descent factor 1/y,
Yn > 0 (minimum)

Xn+1 = Xn — an,(xn) Yn < 0 (minimum)

def gradient_descent(f, df, x0, gam = 0.01, accuracy=le-7, max_iterations=100):
Xprev = X0
for i in range(max_iterations):
xnew = xprev - gam * df(xprev)

if (abs(xnew-xprev) < accuracy):
return xnew

Xprev2 = xprev
Xprev = xnew
return xnew

Freedom in choosing y,

Can be generalized to multi-variable function F(xq,X,,...) final project idea(?)

Xn+1 = Xp — ’YnVF(xn)

