
Computational Physics (PHYS6350)
Lecture 8: Numerical Integration: Part 1

• Basic methods for numerical integration (rectangle, trapezoid, Simpson)
• Adaptive quadrature
• Improper integrals

Instructor: Volodymyr Vovchenko (vvovchenko@uh.edu)
Course materials: https://github.com/vlvovch/PHYS6350-ComputationalPhysics
Online textbook: https://vovchenko.net/computational-physics/
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Numerical integration

References:

Generic problem: evaluate

Chapter 5 of Computational Physics by Mark Newman
Chapter 4 of Numerical Recipes Third Edition by W.H. Press et al.

We need numerical integration when
• Cannot/difficult integrate analytically
• Only know the integrand f(x) at certain points

I  



Numerical integration: rectangular (midpoint) rule

Interpret the integral as the area under the curve and 
approximate by a rectangle evaluated at midpoint

Error (from Euler-McLaurin formula):

The rule is exact for the integration of linear functions



Numerical integration: rectangular (midpoint) rule

Although the rectangle is a poor 
approximate of the line (which is a 
trapezoid here), the errors cancel out

Example:



Numerical integration: rectangular (midpoint) rule

Another example:

Rectangle rule gives Irect = 2 which is way off



Extended (composite) rectangular rule

Split the integration interval into N sub-intervals 
and apply the rectangle rule separately to each one

Error estimate:



Extended (composite) rectangular rule



Numerical integration: trapezoidal rule

Approximate the integral by a trapezoid

Error:

The rule is exact for the integration of linear functions



Numerical integration: trapezoidal rule

Trapezoidal rule gives Itrap = 16, way off and in the opposite 
direction relative to rectangle rule



Extended trapezoidal rule

Error estimate:



Extended (composite) trapezoidal rule



Numerical integration: Simpson’s rule

Recall the error estimates for rectangular and 
trapezoidal rules

Combine them to eliminate the O(h2) error term:

i.e.

An equivalent way to obtain the rule: replace the integrand by 
the parabolic interpolation

Simpson’s rule



Numerical integration: Simpson’s rule

The error for the Simpson’s rule is

The method is exact for polynomials up to third order



Numerical integration: Simpson’s rule

Simpson’s rule gives Itrap = 6.66 using three points, which is already not too 
bad!



Extended Simpson’s rule

Error estimate:

N must be even!



Extended Simpson’s rule



Comparing the methods

TrapezoidRectangle Simpson



Adaptive quadrature

We would like to control the error in our calculation

This can be achieved by doubling the number of subintervals 
and keeping track of the error estimate

Recall that in the rectangle/trapezoidal rule the error is 
proportional to h2

At step k we have ℎ! = ℎ!"#/2 therefore
and the error at step k is estimated as



Adaptive trapezoidal rule



Adaptive Simpson rule

For Simpson’s rule (understand why 15 and not 3?)



Adaptive quadratures: Romberg method

Recall that we obtained error estimate for trapezoidal method at step k

On the other hand, by definition, 

Therefore, we can improve our estimate of the integral as

Romberg method: continue this procedure iteratively

until the desired accuracy is reached



Romberg method



Discontinuous integrals

Nothing wrong with integrating discontinuous functions



Discontinuous integrals



Discontinuous integrals

The methods kind of work but not quite



Discontinuous integrals

Better strategy: split the integral into two and integrate separately



Improper integrals

• Contain integrable singularities (typically at the endpoints)

• (Semi-)infinite integration range

Example: Momentum integration over thermal distributions (Fermi-Dirac/Bose-Einstein) 



Improper integrals: Singularities at endpoints

• Even though if the singularities at integration endpoints 
are integrable, the trapezoidal, Simpson, etc. methods will 
fail because they evaluate the integrand at the endpoints 

• Solution: use method that does use the endpoints (e.g. 
rectangle rule)



Improper integrals: Singularities at endpoints



Improper integrals: (Semi-)infinite intervals

Solution: map to a finite interval [e.g. (0,1)] by a change of variables

• Infinite:

• Semi-infinite:

Then apply a standard method (e.g. rectangle rule to avoid endpoint singularities) 
to g(t)

NB: Other options for the change of variable are possible

(1 − 𝑡)!



Improper integrals: Semi-infinite intervals



Improper integrals: Infinite intervals


