b]

Computational Physics (PHYS6350)

Lecture 21: Problems in quantum mechanics

* Matrix method for eigenenergies and eigenstates
* Time-dependent Schroedinger equation
* Variational method

Instructor: Volodymyr Vovchenko (vvovchenko@uh.edu)

Course materials: https://github.com/vlvovch/PHYS6350-ComputationalPhysics
Online textbook: https://vovchenko.net/computational-physics/

mailto:vvovchenko@uh.edu
https://github.com/vlvovch/PHYS6350-ComputationalPhysics
https://vovchenko.net/computational-physics/

Finding the eigenenergies

Time-independent Schroedinger equation reads

h? d
[_E P V(X)] w(x) = Ey(x).

e.g. in a box of length L with boundary conditions w(-~L/2) = w(L/2) = 0.

In the case of (an)harmonic oscillator we learned how to use the shooting method to find the

eigenenergies by combining a root finder (bisection or secant method) with an ODE integrator
(such as RK4).

This involved discretizing the space on a grid.

The problem can also be tackled efficiently by linear algebra methods.

Matrix method for eigenenergies and eigenstates

By discretizing the space into N intervals, we can represent the wave function y(x) as an N+1-dimensional vector

U=(Po,..,Un;1) such that
i = w(xg), x; = —L/2 + kdx, dx = L/N.

Due to the boundary conditions we have Y=y, =0, thus we effectively deal with a N—1-dimensional space.

Each operator becomes a (N—1)x(N—1) matrix. By discretizing d?/dx? by the central difference we get

d2 W, ~ Yyl — 2Wn +Wn—l
dx2 " dx?

Therefore, the Hamiltonian has the following matrix representation:
h2
Hnm = _% [5m,n+1Wn+1 - 25m,an + 5m,n—an—l] + 5m,nV(xn)’

i.e., His a tridiagonal symmetric matrix.

Therefore, finding the energies and wave function of the system corresponds to the matrix eigenvalue problem
for the matrix H.

Let us apply the method to (an)harmonic oscillator we had before.

Matrix method

Constants

me = 9.1094e-31 # Mass of electron

hbar = 1.0546e-34 # Planck's constant over 2#*pi
e = 1.6022e-19 # Electron charge

V0 = 50*e

a = le-11

N = 1000

L = 20*a

dx = L/N

Potential functions
def Vharm(x):
return V0 * x*%*2 / a**2

def Vanharm(x):
return V0 * x**4 / a**4

Construct the Hamiltonian matrix

def HamiltonianMatrix(V):
H = (-hbar**2 / (2*me*dx**2)) * (np.diag((N-2)*[1],-1) + np.diag((N-1)*[-2],0) + np.diag((N-2)*[1],1))
H += np.diag([V(-0.5 * L + dx*(k+0.5)) for k in range(1l,N)],0)
return H

Matrix method for harmonic oscillator

We can use QR decomposition to solve the eigenvalue problem

Since our matrix is real symmetric, we can use a straightforward implementation of the QR algorithm. We thus expect to

obtain a representation of H in the form

H=QTAQ

where A is diagonal and contains the energies, while Q is orthogonal and has eigenvectors (wave functions) in its columns.

def eigen gr simple(A, iterations=100):
Ak = np.copy(A)
n = len(A[0])
Q0 = np.eye(n)
for k in range(iterations):
Q, R = np.linalg.qr(2Ak)
Ak = np.dot(R,Q)
Q0 = np.dot(QQ,Q)
return Ak, QQ

Harmonic oscillator
Vpot = Vharm
Vlabel = "Harmonic oscillator"
A, Q = eigen_gr simple(HamiltonianMatrix(Vpot),50)
indices = np.argsort(np.diag(a))
eigenvalues = np.diag(A)[indices]
eigenvectors = [Q[:,indices[i]] for i in range(len(indices))]
Nprint = 10
print("First",Nprint, "eigenenergies of", Vlabel, "are")
for n in range(Nprint):
print("E ",n,"=",eigenvalues[n]/e,"eV")

First 10 eigenenergies of Harmonic oscillator are
0 = 138.0227220181584 eV
= 414.0656659872072 eV
690.1036097526343 eV
966.136554028328 eV
1242.1646545118429 ev
1518.1925691076508 eV
1794.264990851771 ev
2070.579770340522 ev
2347.6427052950403 ev
2626.3110902945514 eV

=
|

W oOoJoaU & WN

HEEEEEEEEE

Matrix method for harmonic oscillator

Eigenstates are encoded in the columns of matrix Q

Harmonic oscillator

2.0
Normalization
1.5 1 # Compute the normalisation factor with trapezoidal rule
def integral psi2(psi, dx):
N = len(psi) - 1
1 0 -l ret = 0
for k in range(N):
ret += psi[k] * np.conj(psi[k]) + psi[k+1] * np.conj(psi[k+1])
— 0.5
? ret *= 0.5 * dx
=
— 0.0 - return ret
S
>
-0.5 1
-1.0 A
-1.5 A

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
x [A]

Matrix method for anharmonic oscillator

First 10 eigenenergies of Anharmonic oscillator are
0 = 205.3022520064578 eV
735.6578481328587 eV
1443.4564627068437 eV
2254.386094620506 eV
3148.0999787331502 eV
4111.305594420894 eV
5135.101294752596 eV
6213.029170837947 eV
7340.383787818462 eV
= 8514.323805747972 eV

mmmmmlmmmmm
W oo o0& WN -
Il

wix) [A~172]

Anharmonic oscillator

-1.00 -0.75 -0.50 -0.25

060
x [A]

0.25

0.50

0.75

1.00

Matrix method

One can also use efficient implementations of the eigenvalue problem in numpy

Anharmonic oscillator
Vpot = Vharm

Vlabel = "Harmonic oscillator" 2
eigenvalues, eigenvectors = np.linalg.eigh(HamiltonianMatrix(Vpot))
Nprint = 10
print("First" ,Nprint, "eigenenergies of", Vlabel, "are")
for n in range(Nprint):
print("E_",n,"=",eigenvalues[n]/e,"eVv") 1+
Harmonic oscillator §
2.0 |
3 o
x
1.5 1 >
1.0 A
_1 .
o 0.5
0
=
S 00 T _2 -
3. T T T T T T T T T
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
—0.5 1
x [A]
-1.0 A
-1.5 A

-1.00 -0.75 -0.50 -0.25 0.00 025 050 075 1.00
x [A]

Time-dependent Schroedinger equation

The time-dependent Schrodinger equation reads

A all/
Hy =ih—.
I
e.g., for a free particle it reads
i A
2m ox2 ot

Formal solution can be written as
w(t) = ¢ 7y (0),
with
O@) = e 74
being the time evolution operator. It is a unitary operator:
vtu =1
Therefore, the norm of the wave function is conserved

|Y|? = const.

Time integration

We can study time evolution by succesively applying approximate (AJ (At) over small time intervals.

e FTCS scheme
l}(At) = e'%ﬁ ~1- %Atﬁ
Such an operator is not unitary since
Utan =1+ %ﬁ # U(AD).

If U is applied to an energy eigenstate y;, such that H v; = E y;, we get
wi(NA?Y) = ANy (0),

IATE,] Since |4;| > 1, the method is unstable.

h

where A; = ll -

¢ Implicit scheme

We apply the approximation of the FTCS scheme to the inverse of U (At). This implies
A iAt 17
UA)=e 71 »

[a—

iAt 7y
1+ Yy H
The operator is also non-unitary. The method is stable because

Al =|—F—| <L

but the method does not conserve the norm of the wave function.

Time integration: Crank-Nicholson scheme

explicit implicit
. A iAt 17 1
~ L - S 7\ e UA)=e 7 » — .
UA)=e " =1 hH 1+ 2LH

s Crank—Nicholson scheme

Crank—Nicholson scheme takes the combination of FTCS and implicit schemes.
This corresponds to a rational approximation of U(At):

A iAt 7 1 - ﬂﬁ
Uan=e v n —2
1+ £LH
This operator is unitary (for a Hermitian H):
Ut =1

and conserves the norm of the wave function.

Free particle in a box

Let us consider the particle in a box of length L. We thus have boundary conditions: w(0) = w(L) = 0.

Given some initial wave function ¥(x), we can numerically integrate the Schrodinger equation to study the time
evolution of the wave function. Let us write the equation in the form:

oy ih o’y
ot 2m ox2

We can now use the central difference approximation for the spatial derivative:

This gives us discretized wave function in coordinate space, in full analogy to the heat equation that we studied
before. The only difference is that now we are dealing with complex-valued functions.

e FTCS scheme
n+1 n ih n n n
v = v tho— W 2w v y)-
2ma
e Implicit scheme
ih

ma?

Wil = 2u v,

¢ Crank-Nicholson scheme
h ih h ih
n+1 n n n n n+1 n+1 n+1

— 4+ —— — 2 4 + —— — 2 + .

Vi =W (V’k+1 Vi ‘Pk—l) 2 Yma? (‘Pk+1 Vi ‘/’k—l)

Initial wave function: Gaussian wave packet

def psil(x):
return np.exp(-(x-x0)**2/(2*sig**2))*np.exp(lj*kappa*x)

Free particle in a box

1.00 - — Re yp(x)

— Im o(x)
— |wo(x)|?

0I5

0.50 A

0.25 A

0.00

wol(x)

—0.25 -

—0.50 A

=0.75 7 \/

—1.00 -

4.6 4.8 5.0 5.2 5.4
X [m] le—9

Time evolution

Wave equation at t = 10.0 as

Wave equation at t = 100.0 as Wave equation at t = 100.0 as
1.00 1.00 1.00
— |wo(x)[% norm = 1.00000+0.00000j —— |wo(x)]% norm = 1.00000+0.00000j
0.75 - 0.75 - 0.75 -
0.50 - 0.50 - 0.50 -
o~ 0251 o~ 0251 . 025-
P! T T /\
£ 000 £ 000 E 000
s s S
-0.25 -0.25 S .25 -
~0.50 ~0.50 —0.50 A
-0.75 -0.75 —0.75 1
—— |@p(x)]2, norm = 1.00000+0.00000j
-1.00 T T T T -1.00 T T T T -1.00 : T T T
0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
x [m] le-8 x[m] le-8 x[m] le-8

Expanding wave packet (towards plane wave), norm is conserved

Variational methods

We are often interested in the ground-state energy of the system

This is the lowest energy solution of the time-independent Schroedinger equation:
Hy(r) = Ep(r)
For many systems it is challenging to solve this problem explicitly.
Variational method involves the use of trial wave functions ¥,;(7)
The average energy computed using the trial wave function sets an upper bound of the ground-state energy

Tia -E[ria
(Ytriat | H |Ptrial) > B,

E["ptrial] = <¢trial |¢trial> a

This is because we can decompose Y,;.(r) into orthogonal basis functions of the Hamiltonian operator

-~

Ve =) nthy Wl = Sum A, = Eny,

n

Variational methods: Hydrogen Atom

Let us take the hydrogen atom (in dimensionless form)

A 1
H=--V?_-—
ZV T

Trial wave function (unnormalized)

'¢a (7‘) — e T

Expectation:
* Exact solution for a =1
* Ground state energy Egs = -0.5 (13.6 V)

Average energy: (E(a)) = fooo 2 () Ho (r)

I 2, (1) Ya(r)

Length scale: Energy scale:
47e h2 h2
- 02 Ey=—F =—-272eV
pe pa’
Bohr radius

Kinetic energy term:

Potential energy term:

1 1
V=—"0p(r)=——e
~alr) =~

Variational methods: Hydrogen Atom

Let us vary alpha from 0.7 to 1.3

import numpy as np
from scipy.integrate import quad

Define the trial wavefunction
def trial_wavefunction(r, alpha): A-L h
pha:

return np.exp(-alpha * r) ’ Ene rgy: _0- 455@0
Alpha:

, Energy: -0.48000
R Alpha: 0.9, Energy: -0.49500

Define the Hamiltonian operator

kinetic += (1 / r) * alpha * psi
potential = -psi / r Alpha: ’ Ene rgy: —0- 495@0
, Energy: -0.48000

return psi * (kinetic + potential) Alpha:
, Energy: -0.45500

Variational method to estimate ground-state energy -L h
|]
def variational_energy(alpha): A p d.:

numerator = quad(lambda r: rxx2 x hamiltonian(r, alpha), @, np.inf, limit=100) (0]

denominator = quad(lambda r: rx*2 * trial_wavefunction(r, alpha)**2, 0, np.inf, 1limit=10) [0]

return numerator / denominator

0.7
0.8
0.9
kinetic = -0.5 % alpha+2 * psi Alpha: 1.0, Enerqy: -0.50000
1.1
1.2
1.3

Vary alpha and compute energies

alphas = np.arange(0.7, 1.4, 0.1) . '3 _
energies = [variational_energy(alpha) for alpha in alphas] In ev' _05 272 eV _ _]‘36 eV

Print results
for alpha, energy in zip(alphas, energies):
print(f'Alpha: {alpha:.1f}, Energy: {energy:.5f}')

Variational Monte Carlo

In practice, computing the integral explicitly can be difficult, especially when we deal with multi-particle system

In Variational Monte Carlo, the corresponding integrals are computed with Monte Carlo techniques

First, rewrite the expectation value for the energy as

2 H¥(X,a)

gy (@) TIPS 4
(¥(a)[¥(a)) [1¥(X,a)” dX
W : N e, e e e :
e can interpret P(X;a) = 0.0 as probability distribution function
U(X,a)|"dX

If we can sample X from P(X; a), the expectation value of the energy E ()
is just the mean of the so-called local energy E),.(X; a)

Sampling from P(X; @) can be achieved through a variety of methods, in the most general case through
importance sampling and Metropolis-Hastings algorithm

Variational Monte Carlo: Hydrogen Atom

Let us turn back to the Hydrogen Atom. Using the same trial wave function, the local energy reads

1, «
T

1
Elocal('r) = —Ea -+ — ? ’l)ba (r) = e_a'r’

The probability distribution for the radial coordinate reads
P,(r;a) o 2 exp(—2ar).
This is a partial case of the Gamma distribution with k = 3 and scale factor 1/(2a).

Algorithm:

For each value of alpha:

1. Sample r from the Gamma distribution

2. Compute the value of the local energy E,..i(alpha)
3. Do it many times and compute the average

Variational Monte Carlo: Hydrogen Atom

Define the local energy

def local_energy(r, alpha):
kinetic = -0.5 * alpha*x*2
kinetic += (1 / r) * alpha
potential = -1 / r
return kinetic + potential

Variational Monte Carlo Variational Monte Carlo Results (Hydrogen Atom)

def variational_monte_carlo(alpha, n_samples):
samples = np.random.gamma(shape=3, scale=1/(2.*alpha), size=n_samples) 1221 _;_ SS?Z;ZZEY +
local_energies = [local_energy(r, alpha) for r in samples] 1241 *
return np.mean(local_energies), np.var(local_energies), np.std(local_energies) / np.sqrt(n_samples)
-12.6
Vary alpha and compute energies _
alphas = np.arange(0.7, 1.4, 0.1) 3 -128
n_samples = 10000 &
2 -130 . +
energies = [] -13.2
errors = []
13.4 l 3
-13.6 —F———————————— e e
Alpha: 0.7, Mean Energy: -0.45414, Variance: 0.03601, Error: 0.00190 07 o8 09 10 11 12 13
Alpha: 0.7999999999999999, Mean Energy: -0.47891, Variance: 0.02227, Error: 0.00149 a
Alpha: 0.8999999999999999, Mean Energy: -0.49567, Variance: 0.00710, Error: 0.00084
Alpha: 0.9999999999999999, Mean Energy: -0.50000, Variance: 0.00000, Error: 0.00000
Alpha: 1.0999999999999999, Mean Energy: -0.49373, Variance: 0.01236, Error: 0.00111
Alpha: 1.1999999999999997, Mean Energy: -0.47883, Variance: 0.05781, Error: 0.00240
Alpha: 1.2999999999999998, Mean Energy: -0.45162, Variance: 0.15036, Error: 0.00388

Variational Monte Carlo: Helium Atom

In the Helium Atom we have two electrons. Their interaction complicates things.

Let us take the trial wave function as a product of Hydrogen Atom wave functions

Yalri,ra) = e o)

1 1 1 1 1 1
Local energy: Eioca(r1,72) = —502(1 +1) +a (E + E) —Z (,,._1 T E) T it — 1|

As before, the radial coordinates r; and r, follow the Gamma distribution with kK = 3 and scale factor 1/(2a).

However, we have an additional factor in the local energy which depends on the spherical angles:

ri —ro| = 4/72 4+ 12 — 2r175 (cos 01 cos 05 + sin 0; sin O, cos(p1 — ¢2)).
1 2

We have to sample 8;, and ¢, from a unit sphere isotropically

Variational Monte Carlo: Helium Atom

Define the trial wavefunction (not used explicitly in this example)
def trial_wavefunction_helium(rl, r2, alpha):
return np.exp(-alpha * (rl + r2))

Define the local energy

def local_energy_helium(coordl, coord2, alpha, Z=2):
[rl, costhl, phl] = coordl
[r2, costh2, ph2] = coord2
kinetic = -0.5 * alphax*2 * (1 + 1)
kinetic += (1 / r1 + 1 / r2) * alpha
potential_nucleus = =Z * (1 / r1 + 1 / r2)
sinthl = np.sqrt(1l - costhl¥x2)
sinth2 = np.sqrt(1l - costh2x*2)
ri2 = np.sqrt(ril*x2 + r2%x2 — 2 * rl % r2 % (costhl * costh2 + sinthl % sinth2 % np.cos(phl - ph2)).
potential_electron_electron = 1 / rl2
return kinetic + potential_nucleus + potential_electron_electron

Two electrons

def sample_coordinates(n_samples):
return |
[np.random.gamma(shape=3, scale=1/(2.xalpha)),
np.random.uniform(-1, 1),
np.random.uniform(@, 2xnp.pi)]

for i in range(n_samples)]

Variational Monte Carlo for Helium
def variational_monte_carlo_helium(alpha, n_samples):
Sample coordinates (including angles)
ri_samples = sample_coordinates(n_samples)
r2_samples = sample_coordinates(n_samples)
Calculate local energies
local_energies = [local_energy_helium(rl, r2, alpha) for rl, r2 in zip(rl_samples, r2_samples)]
return np.mean(local_energies), np.var(local_energies), np.std(local_energies) / np.sqrt(n_samples)

Energy (eV)

Variational Monte Carlo Results (Helium Atom)

-=—=- Exact Energy *
VMC Ener:
_40 8] gy
©
-50 1 ¢
[
[}
o]
—60 ®
® s}
o L
=70 A o
[J
° o
° e}
s} s}
SR AR Sl T S N S
_80 T T T T
1.0 15 2.0 2.5 3.0

The lowest we get (-77.7 V)

is not too far from the true
value (-79.0 eV)!

