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Finding the eigenenergies

Time-independent Schroedinger equation reads

e.g. in a box of length L with boundary conditions 

In the case of (an)harmonic oscillator we learned how to use the shooting method to find the 
eigenenergies by combining a root finder (bisection or secant method) with an ODE integrator 
(such as RK4).

This involved discretizing the space on a grid.

The problem can also be tackled efficiently by linear algebra methods.



Matrix method for eigenenergies and eigenstates

By discretizing the space into N intervals, we can represent the wave function ψ(x) as an N+1-dimensional vector 
ψ=(ψ0,…,ψN+1) such that 

Due to the boundary conditions we have ψ0=ψN+1=0, thus we effectively deal with a N−1-dimensional space.

Each operator becomes a (N−1)×(N−1) matrix. By discretizing d2/dx2 by the central difference we get

Therefore, the Hamiltonian has the following matrix representation:

i.e., H is a tridiagonal symmetric matrix.

Therefore, finding the energies and wave function of the system corresponds to the matrix eigenvalue problem 
for the matrix H.

Let us apply the method to (an)harmonic oscillator we had before.



Matrix method 



Matrix method for harmonic oscillator

We can use QR decomposition to solve the eigenvalue problem

Since our matrix is real symmetric, we can use a straightforward implementation of the QR algorithm. We thus expect to 
obtain a representation of H in the form

𝐻	 = 	𝑄𝑇	𝐴	𝑄
where A is diagonal and contains the energies, while Q is orthogonal and has eigenvectors (wave functions) in its columns.



Matrix method for harmonic oscillator

Eigenstates are encoded in the columns of matrix Q

Normalization



Matrix method for anharmonic oscillator



Matrix method

One can also use efficient implementations of the eigenvalue problem in numpy



Time-dependent Schroedinger equation

The time-dependent Schrödinger equation reads

e.g., for a free particle it reads

Formal solution can be written as

with 

being the time evolution operator. It is a unitary operator:

Therefore, the norm of the wave function is conserved

𝜓 ! = 𝑐𝑜𝑛𝑠𝑡.



Time integration



Time integration: Crank-Nicholson scheme

explicit implicit

Crank–Nicholson scheme takes the combination of FTCS and implicit schemes.
This corresponds to a rational approximation of .𝑈(∆𝑡):

• Crank–Nicholson scheme

This operator is unitary (for a Hermitian Ĥ):

and conserves the norm of the wave function.



Free particle in a box
Let us consider the particle in a box of length L. We thus have boundary conditions:

Given some initial wave function ψ(x), we can numerically integrate the Schrödinger equation to study the time 
evolution of the wave function. Let us write the equation in the form:

We can now use the central difference approximation for the spatial derivative:

This gives us discretized wave function in coordinate space, in full analogy to the heat equation that we studied 
before. The only difference is that now we are dealing with complex-valued functions.



Initial wave function: Gaussian wave packet



Time evolution

Expanding wave packet (towards plane wave), norm is conserved



Variational methods

We are often interested in the ground-state energy of the system

This is the lowest energy solution of the time-independent Schroedinger equation:
.𝐻𝜓 𝒓 = 𝐸𝜓 𝒓

For many systems it is challenging to solve this problem explicitly.

Variational method involves the use of trial wave functions 𝜓𝑡𝑟𝑖𝑎𝑙(𝒓)

The average energy computed using the trial wave function sets an upper bound of the ground-state energy

This is because we can decompose 𝜓𝑡𝑟𝑖𝑎𝑙(𝒓) into orthogonal basis functions of the Hamiltonian operator 

𝜓𝑡𝑟𝑖𝑎𝑙 =5
"

𝑐" 𝜓" 𝜓" 𝜓# = 𝛿𝑛𝑚 .𝐻𝜓𝑛 = 𝐸𝑛𝜓𝑛



Variational methods: Hydrogen Atom

Let us take the hydrogen atom (in dimensionless form)

Length scale: Energy scale:

Bohr radius

Trial wave function (unnormalized)

Expectation:
• Exact solution for 𝛼 = 1
• Ground state energy EGS = -0.5 (13.6 eV) 

Kinetic energy term:

Potential energy term:

Average energy: 𝐸(𝛼) =
∫$
% 𝑟!𝜓&(𝑟) .𝐻𝜓𝛼 𝑟

∫$
% 𝑟!𝜓&(𝑟)	𝜓𝛼 𝑟



Variational methods: Hydrogen Atom

Let us vary alpha from 0.7 to 1.3

In eV: -0.5 * 27.2 eV = -13.6 eV 



Variational Monte Carlo

In practice, computing the integral explicitly can be difficult, especially when we deal with multi-particle system

In Variational Monte Carlo, the corresponding integrals are computed with Monte Carlo techniques

First, rewrite the expectation value for the energy as

We can interpret as probability distribution function

If we can sample 𝑋 from 𝑃 𝑋; 𝛼 , the expectation value of the energy 𝐸(𝛼) 
is just the mean of the so-called local energy 𝐸loc(𝑋; 𝛼) 

𝑃 𝑋; 𝛼 =

𝐸loc(𝑋; 𝛼) = 

Sampling from 𝑃 𝑋; 𝛼  can be achieved through a variety of methods, in the most general case through 
importance sampling and Metropolis-Hastings algorithm



Variational Monte Carlo: Hydrogen Atom

Let us turn back to the Hydrogen Atom. Using the same trial wave function, the local energy reads

The probability distribution for the radial coordinate reads

This is a partial case of the Gamma distribution with k = 3 and scale factor 1/(2α). 

Algorithm:
For each value of alpha:
1. Sample r from the Gamma distribution
2. Compute the value of the local energy Elocal(alpha)
3. Do it many times and compute the average



Variational Monte Carlo: Hydrogen Atom



Variational Monte Carlo: Helium Atom

In the Helium Atom we have two electrons. Their interaction complicates things.

Let us take the trial wave function as a product of Hydrogen Atom wave functions

Local energy:

As before, the radial coordinates r1 and r2 follow the Gamma distribution with k = 3 and scale factor 1/(2α). 

However, we have an additional factor in the local energy which depends on the spherical angles:

We have to sample 𝜃1,2 and 𝜙1,2 from a unit sphere isotropically



Variational Monte Carlo: Helium Atom

The lowest we get (-77.7 eV) 
is not too far from the true 
value (-79.0 eV)!


