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Random numbers play important role, both in modelling of the physics processes (some 
of which are regarded as truly random, such as radioactive decay) and as a tool to tackle 
otherwise intractable problems.

(Pseudo-)random numbers

Numbers generated on a computer are usually not truly random, but a good 
generator produces numbers that reflect the desired properties of a random 
variable, hence it is called pseudo-random number generator.

Examples:
• Numerical integration (especially in many dimensions)
• Sampling microstates in statistical mechanics
• Simulating quantum processes
• Monte Carlo event generators



• The most basic routine produces a random integer number x 
between 0 and some maximum value m. 

• By dividing over m one can get a real pseudo-random number 
𝜂	 = 	𝑥/𝑚	which is uniformly distributed in an interval 𝜂 ∈ (0,1)

• By applying various transformations and techniques to the 
sequence of 𝜂	one can sample other (non-uniform) distributions.

Pseudo-random numbers on a computer

How to sample pseudo-random numbers x?



Historically, one of the simplest RNG is linear congruential generator (LCG)*.

Linear congruential generator

for some parameters a, m, x0.

It generates a sequence of pseudo-random numbers in accordance with an iterative 
procedure

The next number in a sequence depends only on the present one.

The sequence is periodic with a period of at most m

*Do not use LCG in any serious calculation(!)

𝑥!"# = 𝑎𝑥! + 𝑐 	mod	𝑚

C++: avoid using rand()



Linear congruential generator: Example



LCG has some serious drawbacks:

Apart from a rather short period, it also fails many statistical randomness tests.

Linear congruential generator

For instance, if one regards random numbers as components of a vector (x,y,…), 
the method tends to generate these points on a hyperplane (spectral test).
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LCG is not and should not be used in any serious calculations.

Other methods have been developed over the years and the general method of 
choice is Mersenne Twister random number generator which is implemented by 
default in many programming environments. 
MT has a long period of 219937 - 1, passes most statistical randomness tests, fast, 
and suitable for most physical applications (except cryptography).

It now implemented by default in many languages and we will take it for granted.

Mersenne Twister

Python: C++ (since C++11):



Mersenne Twister



Random seed

Most RNGs (like LCG, Mersenne Twister,…) maintain state variables and 
iteratively generate a pre-determined sequence of (pseudo)-random numbers

The initial state can be changed by specifying the seed

Running the program from the same seed will generate identical outcome

Using the same seed is good for debugging… but bad for parallel production runs on a cluster



Simulation example: Radioactive decay

Example 10.1 from M. Newman, Computational Physics

Some physical processes are truly random (recall quantum mechanics), for instance radioactive decay

The number of radioactive isotopes with a half-life of 𝜏 evolves as

therefore, the probability for a single atom to decay over the time interval t is 

Let us simulate the time evolution for a sample of thallium atoms decaying (half-life of 𝜏	= 3.053 mins) 
into lead atoms.



Simulation example: Radioactive decay

Expected:



Simulation example: Radioactive decay

Expected:



Simulation example: Brownian motion

Brownian motion is a motion of a heavy particle in a gas colliding with the lighter gas particles.
We can consider a simplified 2D motion of particle by randomly making 
a small step at each iteration in one of the four directions.
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Computing integrals: Estimating the area under the curve

Recall the interpretation of a definite integral as the area under the curve.
We can use this interpretation to apply random numbers for approximating integrals.

Consider



Computing integrals: Estimating the area under the curve

We can estimate the area by sampling the points uniformly from an enveloping rectangle and counting the 
fraction of points under the curve given by the integrand f(x).

Assuming an integral

where f(x) > 0 and f(x) < ymax, the integrand can be evaluated as

where C is the number of the sampled points that fall under f(x).

The statistical error of the integrand can be estimated using the properties of the binomial distribution 
with p = C/N:

To reduce the error by factor x2 we need to sample x4 more numbers – true for most Monte Carlo methods.

The error scales with N-1/2



Computing integrals: Estimating the area under the curve



Computing 𝝅

Consider a circle of unit radius r = 1. Its area is:

The circle can be embedded into a square with a side length of two. The area of the square is: Asq = 22 = 4

Consider now a random point anywhere inside the square. The probability that it is also inside the circle is the ratio of their 
areas:

This probability can be estimated by sampling points inside the square many times and counting how many fall inside 
the circle. 𝜋 can therefore be estimated as:
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This method is known as the Monte Carlo estimation of π.



Computing pi

Try a larger number of points



Computing integral as the average

• The integral of a function over an interval (a, b) is given by:

• The mean value of f(x) over (a, b) is:

which gives:

• The integral can be estimated by computing the average value of f(x), where x is randomly sampled over (a, b):

• Using the law of averages, the error estimate involves the variance of f(x):



Computing integral as the average

Advantages: 
• the method works also if f(x) is negative 
• no need to know its maximum value



Another way to compute pi

Consider an integral
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Computing multi-dimensional integrals

Monte Carlo methods really shine when it comes to numerical evaluation of integrals in multiple dimensions.
Consider the following D-dimensional integral

The total number of integrand evaluations is 𝑁$%$ = ∏&'#
(! 𝑁&, 

e.g. if we use the same number N of points in each dimension, 𝑁$%$ scales exponentially with D

Computing it numerically using for instance the rectangle rule would involve the evaluation of a 
multi-dimensional sum

where

curse of dimensionality



Computing multi-dimensional integrals: Monte Carlo

Similar to 1D case, replace

Here x1,…,xD are independent random variables distributed uniformly in intervals xk in [ak,bk].

by the mean

Increasing the number of dimensions by one: sample one more number each iteration.

Error estimate:

linear complexity in D



Computing multi-dimensional integrals: Monte Carlo

Implementation:



Computing multi-dimensional integrals: Monte Carlo

Our example:

Analytic result:



Volume of a D-dimensional ball (hypersphere)

Let us consider an D-dimensional ball of radius R. 
Its volume is given by a D-dimensional integral

This can be written with the recursion formula

with 𝑉) 𝑅 = 1.

Rectangle (non-MC) method (recursive)



Volume of a D-dimensional ball (hypersphere)

Monte Carlo approach:
Observe that the ball 𝑥#* +⋯+ 𝑥+* < 𝑅 is a subvolume of a hypercube −𝑅 < 𝑥#, … , 𝑥+ < 𝑅.

If we now randomly sample points that are uniformly distributed inside the hypercube,
the fraction C/N of those that are also inside the ball will reflect
the ratio of the ball and hypercube volumes 𝑉+(𝑅) and 𝑉,-./ 𝑅 = (2𝑅)+

Therefore,



Volume of a D-dimensional ball (hypersphere)


