b]

Computational Physics (PHYS6350)

Lecture 17: Random numbers

Reference: Chapter 10 of Computational Physics by Mark Newman

Instructor: Volodymyr Vovchenko (vvovchenko@uh.edu)

Course materials: https://github.com/vlvovch/PHYS6350-ComputationalPhysics
Online textbook: https://vovchenko.net/computational-physics/

mailto:vvovchenko@uh.edu
https://github.com/vlvovch/PHYS6350-ComputationalPhysics
https://vovchenko.net/computational-physics/

(Pseudo-)random numbers

Random numbers play important role, both in modelling of the physics processes (some
of which are regarded as truly random, such as radioactive decay) and as a tool to tackle
otherwise intractable problems.

Examples:

* Numerical integration (especially in many dimensions)
* Sampling microstates in statistical mechanics

e Simulating quantum processes

* Monte Carlo event generators

Numbers generated on a computer are usually not truly random, but a good
generator produces numbers that reflect the desired properties of a random
variable, hence it is called pseudo-random number generator.

Pseudo-random numbers on a computer

e The most basic routine produces a random integer number x
between 0 and some maximum value m.

* By dividing over m one can get a real pseudo-random number
n = x/m which is uniformly distributed in an interval n € (0,1)

By applying various transformations and techniques to the
sequence of i one can sample other (non-uniform) distributions.

How to sample pseudo-random numbers x?

Linear congruential generator

Historically, one of the simplest RNG is linear congruential generator (LCG)*.

It generates a sequence of pseudo-random numbers in accordance with an iterative
procedure

Xn+q1 = (ax, + c) mod m

for some parameters a, m, x,.

The next number in a sequence depends only on the present one.

The sequence is periodic with a period of at most m

*Do not use LCG in any serious calculation(!) C++: avoid using rand()

Linear congruential generator

import numpy as np
Linear congruential generator

Parameters (based on Numerical Recipes)
lcg_a = 1664525

lcg_c = 1013904223

lcg_m = 4294967296

Current value (initial seed)

leg x =1

def lcg():
global lcg_x
lcg_x = (lcg_a * lcg_x + lcg_c)%lcg_m
return lcg_x

Plot
import matplotlib.pyplot as plt

results = []

N = 1000
for i in range(N):
results.append(lcg()/lcg_m)

plt.xlabel("N")
plt.ylabel("${\eta}s")
plt.plot(results,"o")
plt.show()

: Example
| n.'s‘.:a-

0.6

0.8 - ..‘;!fa‘d:l‘,r

0.4 ..‘E'cf'QE.

% :ﬁp 01.5;':!:=\P
".'fa'."‘o *-."-'."."" 2o 3%
ol a3 ST s SR ".'-.c 2

Linear congruential generator

LCG has some serious drawbacks:

Apart from a rather short period, it also fails many statistical randomness tests.

For instance, if one regards random numbers as components of a vector (x,y,..),
the method tends to generate these points on a hyperplane (spectral test).

Linear congruential generator

LCG has some serious drawbacks:

Apart from a rather short period, it also fails many statistical randomness tests.

For instance, if one regards random numbers as components of a vector (x,y,..),
the method tends to generate these points on a hyperplane (spectral test).

Slightly different choice of m
lcg_m = 3000000000

resultsx = []
resultsy = []

N = 1000

for i in range(N):
resultsx.append(lcg()/lcg_m)
resultsy.append(lcg()/lcg_m)

plt.plot(resultsx, resultsy,"o")
plt.xlabel("x")

plt.ylabel("y")

plt.show()

Linear congruential generator

LCG has some serious drawbacks:

Apart from a rather short period, it also fails many statistical randomness tests.

For instance, if one regards random numbers as components of a vector (x,y,

the method tends to generate these points on a hyperplane (spectral test).

Slightly different choice of m
lcg_m = 3000000000

resultsx = []
resultsy = []

N = 1000
for i in range(N):
resultsx.append(lcg()/lcg_m)

resultsy.append(lcg()/lcg_m)

plt.plot(resultsx, resultsy,"o")

plt.xlabel("x")
plt.ylabel("y")
plt.show()

1.0 ® ® ®
* 2 o @ . < : e ® s b
o el ° ™
L o] ® ®
® 2 o0 % S 0% L e < ®
081 © J o © : e ® : s ® : e ©
™ o o ° ™
e ° o ® e 9 ®
° ° ° ®
® ® e} ® ® ®
o ® o ¢ e ® ®
0.6 : : s ® : e © : e © : e ©
™ ™ ™ ™
o ® o 8 o © ®
> ® ™ ° o ®
™ ™ ™ o ¢
™Y ® ® ® ® ® PY ®
0.4 : : Y : : ° : : e © : : °
] ®
o ¢ o © e © o
™ ™ ° o ¢ o
™Y ® ® ® ® ® ®
o ® ° o
® Y ® ®
021 ¢ : ° o T e ® . T . : . e
® e ©® o ® e ©
o ® e ® o © ®
® ™ o ¢ o ©
o ¢ o ¢ o © e © Y
o{ © © % o ® ® 5 o °® o ¢
0.0 0.2 0.4 0.6 0.8 1.0
X

Mersenne Twister

LCG is not and should not be used in any serious calculations.

Other methods have been developed over the years and the general method of
choice is Mersenne Twister random number generator which is implemented by
default in many programming environments.

MT has a long period of 219937 - 1 passes most statistical randomness tests, fast,
and suitable for most physical applications (except cryptography).

It now implemented by default in many languages and we will take it for granted.

using namespace std;

Python: C++ (since C+-+11): [™"

’/ Initializing the sequence

// with a seed value

Use Mersenne Twister
import numpy as np

// similar to srand()
mt19937 mt (time (nullptr));
np.random.rand() # Random number \eta uniformly distributed over (0,1) // Printing a random number
'/ EimiAarrta rand ()

cout << mt() << 'An';

return 0;

Mersenne Twister

Use Mersenne Twister
import numpy as np

np.random.rand() # Random number \eta uniformly distributed over (0,1)

resultsx = []
resultsy = []

N = 1000

for i in range(N):
resultsx.append(np.random.rand())
resultsy.append(np.random.rand())

plt.plot(resultsx, resultsy,"o")
plt.xlabel("x")

plt.ylabel("y")

plt.show()

1.0

0.8 1

0.6

0.4 -

0.2

0.0 T

o0 9’
S0
Aol

Random seed

Most RNGs (like LCG, Mersenne Twister,..) maintain state variables and
iteratively generate a pre-determined sequence of (pseudo)-random numbers

The initial state can be changed by specifying the seed

Running the program from the same seed will generate identical outcome

resultsx = []
resultsy = []

N = 1000

np.random.seed (1)

for i in range(N):
resultsx.append(np.random.rand())
resultsy.append(np.random.rand())

plt.plot(resultsx, resultsy,"o")
plt.xlabel("x")

plt.ylabel("y")

plt.show()

np.random.seed(1)

for i in range(N):
resultsx.append(np.random.rand())
resultsy.append(np.random.rand())

plt.plot(resultsx, resultsy,"o")
plt.xlabel("x")

plt.ylabel("y")

plt.show()

1.0 1

0.8

0.6

0.4

0.2 4

0.0

'? "? ii!?‘h 'o o
.'. . .. '
‘H’O U" “. ". . .. o ‘b
.. .

1.0

0.8 1

0.6 1

0.4

0.2 1

0.0 T

"‘.f Y s Q.f"t;.'l "
Fe Tt "-‘i:'g.!?'
‘.':‘ "o.s:o.o A AR P

o e] o 0 O.‘ oc . ® v:."c‘

a A, Py "1‘6‘“& ,g:
e R NG LYY A A
,:." 5.’.‘:.. ’ ‘."’:i‘:‘*..' 'é"t‘ p
‘='EP'='.3‘.1?':‘%?ﬂﬂ.'l;;'ﬁg;;!ri::.é:za'!i
o ..‘.-% A AT

Using the same seed is good for debugging... but bad for parallel production runs on a cluster

Simulation example: Radioactive decay

Example 10.1 from M. Newman, Computational Physics

Some physical processes are truly random (recall quantum mechanics), for instance radioactive decay
The number of radioactive isotopes with a half-life of T evolves as

N() = N©)27",
therefore, the probability for a single atom to decay over the time interval t is

pt)=1-=27""

Let us simulate the time evolution for a sample of thallium atoms decaying (half-life of 7 = 3.053 mins)
into lead atoms.

Decay constants

Main 1
NTLl = 100 # Number of thallium atoms gl Lo ?
for t in tpoints:
NPb = 0 # Number of lead atoms .
. X . Tlpoints.append(NT1)
tau = 3.053%60 # Half life of thallium in seconds Phnointsiannend(NED]
h=1.0 # Size of time-step in seconds P JCL
gm:X1=-lg;;(-h/tau) z ?ggg?biiézy of decay in one step # Calculate the number of atoms that decay
: : decay = 0
ctime = 0 # Current time ;
. * for i in range(NT1):
Lists of plot points if np.random.rand()<p:
tpoints = np.arange(0.0,tmax,h) decay += 1
Tlpoints NTl -= decay

= []
Pbpoints = [] NPb += decay

Simulation example: Radioactive decay

100 A
Expected:

80 - N() = N@©0)27",
]
5
- 60 — Nmn
E’ — Npp
)
o -== Expected Nm,

40 A
€
Z

20 -

0 i ———

Simulation

example: Radioactive decay

Number of atoms

1000 A

800 A

600 -

400 -

200 -

— Nmn
— Npp

-~
~~~
-
- ——

—== Expected Nt

0 200 400 600 800

Expected:
N() = N(0)27"",



Simulation example: Brownian motion

Brownian motion is a motion of a heavy particle in a gas colliding with the lighter gas particles.
We can consider a simplified 2D motion of particle by randomly making
a small step at each iteration in one of the four directions.

N = 100000
X =0
y=20

dirs = [ [1,0], [-1,0], [0,1], [0,-1] ]

points_x = [x]

points_y = [y]

for i in range(N):
direction = np.random.randint(4)
X += dirs[direction] [0]
y += dirs[direction] [1]
points_x.append(x)
points_y.append(y)



Simulation example: Brownian motion

Brownian motion is a motion of a heavy particle in a gas colliding with the lighter gas particles.
We can consider a simplified 2D motion of particle by randomly making

a small step at each iteration in one of the four directions.

N = 100000 2007
X =0
y==90

100 -
dirs = [ [1,0], [-1,0], [o,1], [0,-1] ]

points_x = [x] 0+
points_y = [y] ”
for i in range(N):

direction = np.random.randint(4) ~100 -

X += dirs[direction] [@]

y += dirs[direction] [1]

points_x.append(x) ~200 -
points_y.append(y)

Brownian motion

—200 —100 0 100 200 300




Computing integrals: Estimating the area under the curve

Recall the interpretation of a definite integral as the area under the curve.
We can use this interpretation to apply random numbers for approximating integrals.

Consider
I = / " sin(x)dx
0

L e e e e e e e = e

0.8 A

0.6 -

0.4

0.2

— sin(x)
| = area

0-0 T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0



Computing integrals: Estimating the area under the curve

We can estimate the area by sampling the points uniformly from an enveloping rectangle and counting the
fraction of points under the curve given by the integrand f(x).

b
I=/ f(x)dx

where f(x) > 0 and f(x) < Ymax the integrand can be evaluated as

Assuming an integral

C
I= (b - a)ymax N,

where C is the number of the sampled points that fall under f(x).

The statistical error of the integrand can be estimated using the properties of the binomial distribution
with p = C/N:

p(1 - p)
ol =(b— 'max
(b—a)y N

The error scales with N-1/2

To reduce the error by factor x2 we need to sample x4 more numbers — true for most Monte Carlo methods.



Computing integrals: Estimating the area under the curve

# For visualization
points_in = []
points_out = []

# Compute integral \int_a”™b f(x) dx as an area below the curve
# Assumes that f(x) is non-negative and bounded from above by ymax
# Returns the value of the integral and the error estimate
def areaMC(f, N, a, b, ymax):
global points_in, points_out
points_in = []
points_out = []
count = 0@
for i in range(N):
X = a + (b-a)*np.random.rand()
y = ymax * np.random.rand()
if y<f(x):
count += 1
points_in.append([x,y])
else:
points_out.append([x,y])
p = count/N
return (b-a) * ymax * p, (b-a) * ymax * np.sqrt(px(1-p)/N)

def f(x):
return np.sin(x)
N = 1000
I, err = areaMC(f, N, 0, np.pi, 1)
print("I = ",I," +- ",err)

I = 2.004336112990288 +- ©0.04774352682885915



Computing i

Consider a circle of unit radius r = 1. lts area is:
A=nrt=1r

The circle can be embedded into a square with a side length of two. The area of the square is: A;;= 22 =4

Consider now a random point anywhere inside the square. The probability that it is also inside the circle is the ratio of their

areas. e A _f
Ay 4

This probability can be estimated by sampling points inside the square many times and counting how many fall inside

the circle. ™ can therefore be estimated as:
A 1.00 1
= 4 A 0.75 1
sq ’
0.50 1
0.25 1
1'.0 —(I).S O.IO 0:5 1

0.00 A
—0.25 A
—0.50 A

—0.75 A1

—1.00 A

.0



Computing i

Consider a circle of unit radius r = 1. lts area is:

A=nart=nx

The circle can be embedded into a square with a side length of two. The area of the square is: A;;= 22 =4

Consider now a random point anywhere inside the square. The probability that it is also inside the circle is the ratio of their

areas. e A _f
Ay 4

This probability can be estimated by sampling points inside the square many times and counting how many fall inside
the circle. m can therefore be estimated as:

A 1.00 A
# Compute the value of \pi through the fraction of random points inside a square a= 4'14 0.75 -
# that are also inside a circle around the origin sq
# Returns the value of the integral and the error estimate
def piMC(N): 0501
global points_in, points_out
points_in = [] 0.25 1
points_out = []
count = 0 0.00 1
for i in range(N):
X = =1 + 2 % np.random.rand()
y = =1 + 2 % np.random.rand() —0.251
r2 = xkk2 + y**2
if (r2 < 1.): —0.50 A
count += 1
points_in.append([x,y]) —0.75 -
else:
points_out.append([x,y]) ~1.00 1
p = count/N '
return 4. * p, 4. * np.sqrt(p*(1-p)/N) 1.0 05 0.0 05 10

This method is known as the Monte Carlo estimation of .



Computing pi

1.00 1
0.75
0.50
N = 1000
piMC, piMCerr = piMC(N) 0.25 ’

print("pi = ",piMC," +- ",piMCerr)

pi = 3.208 +- 0.050405713961811906

Try a larger number of points

—1.00 T
-1.00 -0.75 -0.50 —0.25 0.00 0.25 0.50 0.75 1.00




Computing integral as the average

The integral of a function over an interval (a, b) is given by:

b
1= f(x)dx

a

The mean value of f(x) over (a, b) is:
[, f@dx T

b—a  b-—a’

which gives: I = (b- a)(f)

(f)=

The integral can be estimated by computing the average value of f(x), where x is randomly sampled over (a, b):

1 N
N= ; f(xi).

Using the law of averages, the error estimate involves the variance of f(x):

51 = (b - a) /(fz)]\—’(f)z

def intMC(f, N, a, b):

total = 0

total_sq = 0

for i in range(N):
X = a + (b-a)*np.random.rand()
fval = f(x)
total += fval
total_sq += fval % fval

f_av = total / N

fsq_av = total_sq / N

return (b-a) * f_av, (b-a) * np.sqrt((fsq_av - f_avxf_av)/N)



Computing integral as the average

L0 == = e e e e e

def f(x):
°8] return np.sin(x)
0 N = 1000
I, err = intMC(f, N, @, np.pi)
0.4 1 prlnt("I - II'I'II S ",err)
027 o I = 1.964605422837963 +- 0.030792720278272654
Advantages:

* the method works also if f{x) is negative
* no need to know its maximum value



Another way to compute pi

Consider an integral

1

1

4 dx = 4arctan(x)|} = x
/0 1 + x2 o



Another way to compute pi

Consider an integral

1

1

4 dx = 4 arctan(x)|} =
L 1+X2 ( )lO

def fpi(x):
return 4 / (1 + x%x%x2)

N = 10000
I, err = intMC(fpi, N, 0, 1)
print("pi = ",I," +- ",err)

pi = 3.1365784339451928 +- 0.006449180867490663



Computing multi-dimensional integrals

Monte Carlo methods really shine when it comes to numerical evaluation of integrals in multiple dimensions.
Consider the following D-dimensional integral

bl bD
I=/ dxl.../ def(xl,...,xD).
a ap

Computing it numerically using for instance the rectangle rule would involve the evaluation of a
multi-dimensional sum

Ny Np D
I~ Z Zf(xkl,...,ka)th,
k=1 kp=1 d=1
where h; = (b; — ad)/Nd and Xk, = Qg + hy(ky; — 1/2).

The total number of integrand evaluations is Ny, = H’jgl N,
e.g. if we use the same number N of points in each dimension, N;,; scales exponentially with D
Nio = N?

curse of dimensionality



Computing multi-dimensional integrals: Monte Carlo

Similar to 1D case, replace

b, bp
I=/ dxl.../ def(xl,...,xD).

D
I=(f(x1,...,%p)) [ [ i — a).
k=1

by the mean

Here x;,..,xp are independent random variables distributed uniformly in intervals x, in [a,by].

Error estimate: oI = \/<f2>;, ) 12[(b1c — ay),
k=1

Increasing the number of dimensions by one: sample one more number each iteration.

<

linear complexity in D



Computing multi-dimensional integrals: Monte Carlo

Implementation:

# Evaluating a multi-dimensional integral
# by sampling uniformly distributed numbers
# and calculating the average of the integrand
def intMC_multi(f, nMC, a, b):
dim = len(a)

total = 0
total_sq = 0
for iMC in range(nMC):
x = [a[idim] + (b[idim] - a[idim]) * np.random.rand() for idim in range(dim)]
fval = f(x)
total += fval
total_sq += fval * fval

f_av = total / nMC
fsg_av = total_sq / nMC

vol = 1.
for idim in range(dim):
vol *= (b[idim] - a[idim])

return vol * f_av, vol * np.sqrt((fsq_av - f_avkf_av)/nMC)



Computing multi-dimensional integrals: Monte Carlo

Our example: & &
u pie- I=/ dxl.../ dxp sin(x; + x5 + ... + xp).
0 0
%%t ime
def f(x): Analytic result:
xsum = 0
for i in range(len(x)):
xsum += x[i] D I=
return np.sin(xsum)
_ 1 1
Ndimmax = 10
NMC = 1000000 5 o
for Ndim in range(1,Ndimmax + 1):
a = [0. for i in range(Ndim)] 3 2
b = [np.pi/2 for i in range(Ndim)]
I, Ierr = intMC_multi(f,NMC,a,b) 4 0
print("D =",Ndim, " I =",I,"+-",Ierr)
1.0001760548105423 +- 0.00048329078936716987 D
2.0003828593503097 +- 0.000526917899834823 6 -8

1.999779600266565 +- 0.0018730526051484867
0.0016542203843071606 +- 0.003935579972226937
-4.003942552547165 +- 0.00545377224016235
-8.007809542583617 +—- 0.007499080458630796
-7.997053750388268 +- 0.01464987689110119
0.012579382216618208 +- 0.02586481622201921
15.948080294527836 +— 0.03792482973598219
=10 I = 31.965268795252253 +- 0.056583114947530044
CPU times: user 19.7 s, sys: 220 ms, total: 19.9 s

Wall time: 19.9 s

CONOURARWNR
o
L I U | ¥ 1 | O [ B 1

wllelolvlelelololollw)



Volume of a D-dimensional ball (hypersphere)

Let us consider an D-dimensional ball of radius R.
Its volume is given by a D-dimensional integral

VD(R)= 1...dXD.

dx
\/xf+...x§)<R
This can be written with the recursion formula

Vp(R) = RP /

-1

1

Vp-1 (\/W) dt,

Rectangle (non-MC) method (recursive)

# Computes volume of a D-dimensional ball nrect = 50

# using a recursion relation and rectangle rule for n in range(5):

# with nrect slices for each dimension - nyn " —_n

def WD(D, R, nrect): print("v",n,"(1) = ",VD(n,1,nrect))
if (D == 0):

Vo(l) = 1.0
return 1. V1(1l) = 2.0
ret = 0. V2 (1) = 3.144340711294003
h = 2. / nrect; V 3 (1) = 4.193292772581682
for k in range(nrect): V4 (1) = 4.940233310235603
xk = -1. + h * (k+1/2.) CPU times: user 2.81 s, sys: 53 ms, total: 2.86 s
ret += VD(D-1,np.sqrt(1-xk**2), nrect) wall time: 2.86 s

ret %= h % Rk*D
return ret



Volume of a D-dimensional ball (hypersphere)

Monte Carlo approach:
Observe that the ball /x2 + -+ x2 < R is a subvolume of a hypercube —R < x4, ..., xp < R.

If we now randomly sample points that are uniformly distributed inside the hypercube,
the fraction C/N of those that are also inside the ball will reflect
the ratio of the ball and hypercube volumes V,(R) and V,.5.(R) = (2R)P

Therefore,

pC

Vp(R) = 2R)"



Volume of a D-dimensional ball (hypersphere)

C
Vp(R) = (2R)DF

def VD_MC(D, R, N = 100):

; nMC = 100000
if (D == 0): for n in range(11):
coune e Ly 0 Vnval, Vnerr = VD_MC(n, 1, nMC)
for iMC o e print("v",n,"(1) = ",Vnval, "+-", Vnerr)
= [-R + 2 * R * np.random.rand() for i in range(n)] VO (1) = 1.0 +— 0.0
r2 = 0. V1(1) = 2.0 +- 0.0
for i in range (D): V 2 (1) = 3.13532 +- 0.00520677299063441
2 4= xs[i]¥x2 V3 (1) = 4.18496 +- 0.012635580635016342
if (r2 < Rxx2): V 4 (1) = 4.94176 +- 0.023376733754397767
count += 1 V5 (1) = 5.2224 +- 0.037395633199613025
V6 (1) = 5.1008 +— 0.054811772399731784
p = count/N V7 (1) = 4.73088 +- 0.0763656607661847
return (2xR)*xD * p, (2*R)**D * np.sqrt(p*x(1-p)/N) V8 (1) = 4.20864 +- 0.10294169171673836
V9 (1) = 3.05152 +- 0.12462208735571717
V 10 (1) = 2.51904 +- 0.16041045469290335



