
Computational Physics (PHYS6350)
Lecture 11: Ordinary Differential Equations

Instructor: Volodymyr Vovchenko (vvovchenko@uh.edu)
Course materials: https://github.com/vlvovch/PHYS6350-ComputationalPhysics
Online textbook: https://vovchenko.net/computational-physics/

mailto:vvovchenko@uh.edu
https://github.com/vlvovch/PHYS6350-ComputationalPhysics
https://vovchenko.net/computational-physics/

Ordinary Differential Equations (ODE)

First-order ordinary differential equation (ODE) is an equation of the form

with initial condition

References: Chapter 8 of Computational Physics by Mark Newman

This determines the x(t) dependence at t>0.

In many physical applications t plays the role of the time variable (classical mechanics
problems), although this is not always the case.

When we need numerical methods for ODEs

The solution to an ODE

can formally be written as

If f does not depend on x, the solution can be obtained through (numerical) integration

In some other cases the solution can be obtained through the separation of variables, e.g.

In all other cases, the solution has to be obtained numerically.

Numerical methods for ODEs

Typically obtain the solution by taking small steps from x(t) to x(t+h)

Characteristics:
• Explicit or implicit

• Explicit methods: use x(t) to calculate x(t+h) directly
• Implicit methods: have to solve a (non-linear) equation for x(t+h)

• Accuracy
• Truncation error at each step is of order O(hn)
• Some schemes are explicitly time-reversal and/or conserve energy
• Adaptive methods adjust the step size h to control the error to the desired accuracy

• Stability
• Whether the accumulated error is bounded (that’s where implicit methods shine)

• Consistency
• Consistent methods reproduce the exact solution in the limit ℎ → 0

Euler’s method

Let us apply the Taylor expansion to express x(t+h) in terms of x(t):

Given that dx/dt = f(x,t) and neglecting the high-order terms in h we have

We can iteratively apply this relation starting from t = 0 to evaluate x(t) at t > 0.

This is the essence of Euler’s method – the simplest method for solving ODEs numerically.

Euler method

Error:
• Local (per time step): O(h2)
• Global (N=tend/h time steps): O(h)

Euler’s method

Midpoint method (2nd order Runge-Kutta)

Euler's method essentially corresponds to approximating the derivative dx/dt with a
forward difference

Recall that central (midpoint) difference gives better accuracy

therefore

How to calculate x(t+h/2) entering the r.h.s? Use Euler’s method

Therefore, , which can be written in two steps

trial step
real step

Midpoint method (2nd order Runge-Kutta)

Error:
• Local (per time step): O(h3)
• Global (N=tend/h time steps): O(h2)

Midpoint method (2nd order Runge-Kutta)

Error:
• Local (per time step): O(h3)
• Global (N=tend/h time step): O(h2)

Classical 4th order Runge-Kutta method

The above logic can be generalized to cancel high-order error terms in various powers in
h, requiring more and more evaluations of function f(x,t) at intermediate steps.

The classical 4th-order Runge-Kutta method is often considered a sweet spot.

It corresponds to the following scheme:

Error:
• Local (per time step): O(h5)
• Global (N=tend/h time steps): O(h4)

The classical 4th-order Runge-Kutta method is a good first choice for solving physics ODEs.

Classical 4th order Runge-Kutta method

Adaptive time step

The choice of the time step is important to reach the desired accuracy/performance.
• h too large: the desired accuracy not reached
• h too small: we waste computing resources on unnecessary iterations
• Local truncation error itself is a function of time depending on the behavior of f(x,t)

Adaptive time step: make a local error estimate and adjust h to correspond to the desired
accuracy

Ways to estimate the error:

• Make two small steps (h) to compute x(t+2h) and compare to the one from a single double step 2h

• Use two methods of a different order and compare their results (e.g. Runge-Kutta-Fehlberg method
RKF45)

https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta%E2%80%93Fehlberg_method

Adaptive time step in RK4 using double step

Recall that the error for one RK4 time step h is of order ch5.
Let us take two RK4 steps h to approximate 𝑥(𝑡 + 2ℎ) ≈ 𝑥!. Then,

The local error estimate for a single RK4 time step h is then

If the desired accuracy per unit time is 𝛿, the desired accuracy per time step h’ is

Now take single RK4 step 𝑥(𝑡 + 2ℎ) ≈ 𝑥" of length 2h

so the time step should be adjusted from h to h’ as

• h’>h: our step size is too small, move on to x(t+2h) and increase the step size to h’
• h’<h: our step size is too large, decrease step size to h’ and try the current step again

RK4 method with adaptive step size

Step size tends to decrease when dx/dt (the r.h.s) is large

Stability, stiff equations, and implicit methods

Consider the following ODE

The exact solution is of course 𝑥 𝑡 = 𝑒#!$% and goes to zero at large times.

with the initial condition x(t=0) = 1.

Let us apply Euler’s method
with h=1/4, 1/8, 1/16

stiff equation

Divergence for h=1/4!

Stability, stiff equations, and implicit methods

Consider the following ODE

The exact solution is of course 𝑥 𝑡 = 𝑒#!$% and goes to zero at large times.

Let us apply Euler’s method
with h=1/4, 1/8, 1/16

stiff equation

Divergence for h=1/4!

RK4: better but still diverges for
h=1/4

with the initial condition x(t=0) = 1.

Euler methods and stiff equations

Recall that in Euler’s method x(t+h) = x(t) + h f(x,t)

If |1 − 15ℎ| > 1, i.e. ℎ > 2/15, the Euler method diverges!

For we have

Solution: implicit methods

Implicit Euler method:

Our stiff equation:

• Implicit methods are more stable than explicit methods
• But require solving non-linear equation for x(t+h) at each step
• Semi-implicit methods: use one iteration of Newton’s method to solve for x(t+h)

Other implicit methods: trapezoidal rule, family of implicit Runge-Kutta methods

Systems of Ordinary Differential Equations

System of N first-order ODE

Vector notation:

• all the methods we covered have the same structure when applied for systems of ODEs
• simply apply component by component

Systems of Ordinary Differential Equations

• Euler method
𝐱(𝑡 + ℎ) = 𝐱(𝑡) + ℎ𝐟[𝐱(𝑡), 𝑡]

• RK2

𝐱(𝑡 + ℎ) = 𝐱(𝑡) + 𝐤!

𝒌𝟏 = ℎ	𝐟[𝐱(𝑡), 𝑡]
𝒌𝟐 = ℎ	𝐟[𝐱 𝑡 + 𝐤$/2, 𝑡 + ℎ/2]

• RK4
𝒌𝟏 = ℎ	𝐟[𝐱(𝑡), 𝑡]
𝒌𝟐 = ℎ	𝐟[𝐱 𝑡 + 𝐤$/2, 𝑡 + ℎ/2]
𝒌𝟑 = ℎ	𝐟[𝐱 𝑡 + 𝐤!/2, 𝑡 + ℎ/2]
𝒌𝟒 = ℎ	𝐟[𝐱 𝑡 + 𝐤', 𝑡 + ℎ]

𝐱(𝑡 + ℎ) = 𝐱(𝑡) +
1
6 (𝐤$ + 2𝐤! + 2𝐤' + 𝐤()

Systems of Ordinary Differential Equations

Systems of Ordinary Differential Equations: Example

Systems of 2nd-order ODEs

Newton/Lagrange equations of motion are 2nd order systems of ODE

A system of N second-order ODEs

can be written as a system of 2N first-order ODEs by denoting

and can be solved for x(t) and v(t) using standard methods

Example: Simple pendulum

The equation of motion for a simple pendulum reads

denote &'
&%
= 𝜔 and write a system of two first-order ODE

For small angles sin 𝜃 ≈ 𝜃 , an analytic solution exists

Example: Simple pendulum

Initially at rest at angle 𝜃(= 20° ≈ 0.111𝜋 L=0.1 m, g=9.81 m/s2

Linear regime at small angles

Example: Simple pendulum

Initially at rest at angle 𝜃(= 179° ≈ 0.994𝜋

Non-linear regime at large angles, approximate analytic solution fails

L=0.1 m, g=9.81 m/s2

