
Computational Physics (PHYS6350)

Lecture 2: Data Visualization, Machine Precision

• Data visualization (plotting with matplotlib as an example)
• Accuracy of integer and floating-point number representation

Instructor: Volodymyr Vovchenko (vvovchenko@uh.edu)
Course materials: https://github.com/vlvovch/PHYS6350-ComputationalPhysics
Online textbook: https://vovchenko.net/computational-physics/

mailto:vvovchenko@uh.edu
https://github.com/vlvovch/PHYS6350-ComputationalPhysics
https://vovchenko.net/computational-physics/

Data visualization

References: Chapter 3 of Computational Physics by Mark Newman
Matplotlib documentation

• Line plots
• Scatter plots
• Contour/density plots (2D data)

http://www-personal.umich.edu/~mejn/cp/chapters/graphics.pdf
https://matplotlib.org/stable/index.html

Plotting the data

Computer programs produce numerical data

Numbers alone do not always make it easy to understand the
behavior of the system and its properties

Consider a function 𝑦 = sin(𝑥)

Let us calculate it for 10 equidistant points in the interval x = 0…10

Putting it on a graph

Let us add more points…

Putting it on a graph

…

Now we have enough points to join them by a smooth line

Plot multiple lines to compare functions, profiles, etc.

Things to avoid

Insufficient number of data points

Things to avoid

Unlabeled axes

Things to avoid

Indistinguishable line styles

Scatter plots

Not all data points are suitable to be joined by lines

Consider the observations of star surface temperature (= x) and brightness (= y)

Use scatter plot to study correlation and structures between these features
…

Contour and density plots

For example fields, such as electric potential of a dipole

Errors and accuracy

References: Chapter 4 of Computational Physics by Mark Newman
Chapter 1.1 of Numerical Recipes Third Edition by W.H. Press et al.

http://websites.umich.edu/~mejn/cp/chapters/errors.pdf

Integer representation

Numbers on a computer are represented by bits – the sequences of 0s and 1s

Most typical native formats:
• 32-bit integer, range −2,147,483,647 (-231) to +2,147,483,647 (231)
• 64-bit integer, range ~ −1018 (-263) to +1018 (263)

Python supports natively larger numbers but calculations can become slow

In C++ it is important to avoid under/over-flow

+5	 = 	+(1 ' 2! + 0 ' 2" + 1 ' 2#)

sign digits sign digits

−5	 = −(1 ' 2! + 0 ' 2" + 1 ' 2#)

Floating-point number representation

Floating-point, or real, numbers are represented by a bit sequence as well,
which are separated into:
• Sign S
• Exponent E
• Mantissa M (significant digits)

Main consequence: Floating-point numbers are not exact!

For example, with 52 bits in mantissa one can store about 16 decimal digits

Range:
Significant digits:

32-bit float (single precision) 64-bit float (double precision)

Bits: (sign-exponent-mantissa)

~ -10308 to 10308

1-8-23 1-11-52

~ -1038 to 1038

~7 decimal digits ~16 decimal digits

e.g.

Floating-point number representation

When you write

What it means

for a 64-bit float

Example: Equality test

You can do instead

Error accumulation

unavoidable round-off error

Errors also accumulate through arithmetic operations,
e.g.

• 𝜎,~ 𝑁𝜖- if errors are independent
• 𝜎,~𝑁𝜖- if errors are correlated
• In some cases 𝜎, can become “large” even in a single operation

Two large numbers with a small difference

Let us have 𝑥 = 1 and y = 1 + 𝛿 2

Symbolically, one has 𝛿./ 𝑦 − 𝑥 = 2 = 1.41421356237…

Let us test this relation on a computer for a very small value of 𝛿 = 10./0

Catastrophic loss of precision!
What happened?

y = 1.000000000000014 142135623730951 …
x = 1.000000000000000 000000000000000 …

significant digits these do not fit

Quadratic equation

Let us calculate the roots for 𝑎 = 10.0, 𝑏 = 100, 𝑐 = 10.0

Symbolically, the roots are:

|ac|<<b2

x2 looks ok but x1 seems off(?)

𝑏# − 4𝑎𝑐 is very close to b

Quadratic equation

Standard form: Alternative form:

Using the alternative form

x1 is fixed but now x2 is off

Solution: Make a judicious choice between standard and alternative form for each root
separately, such that subtraction of two similar number is avoided

Other common situations

Sometimes a small h is too small

• Simple numerical derivative (see the sample code)

• Roots of high-degree polynomials

Advanced topic: Kahan summation
final project idea(?)

