b]

Computational Physics (PHYS6350)

Lecture 2: Data Visualization, Machine Precision

 Data visualization (plotting with matplotlib as an example)

* Accuracy of integer and floating-point number representation

Instructor: Volodymyr Vovchenko (vvovchenko@uh.edu)

Course materials: https://github.com/vlvovch/PHYS6350-ComputationalPhysics
Online textbook: https://vovchenko.net/computational-physics/

mailto:vvovchenko@uh.edu
https://github.com/vlvovch/PHYS6350-ComputationalPhysics
https://vovchenko.net/computational-physics/

Data visualization

* Line plots
* Scatter plots
« Contour/density plots (2D data)

References: Chapter 3 of Computational Physics by Mark Newman

Matplotlib documentation

http://www-personal.umich.edu/~mejn/cp/chapters/graphics.pdf
https://matplotlib.org/stable/index.html

Plotting the data

Computer programs produce numerical data

sin(x)
9.
0.841471
0.9092974
0.14112

Numbers alone do not always make it easy to understand the ;
1
2
3
Consider a function y = sin(x) 4 -0.7568025
5
6
7
8
9

behavior of the system and its properties

-0.9589243
-0.2794155
0.6569866
©.9893582
0.4121185
10 -0.5440211

Let us calculate it for 10 equidistant points in the interval x = 0..10

Putting it on a graph

1.00 } . .
* X sin(x)
0.75} .) o

0.50} 1 0.841471
’ 2 ©.9092974

025 . 3 9.14112
< 0.00} - 4 -0.7568025
@ 5 _-0.9589243
—0.25¢ : 6 -0.2794155
—_0.50| . 7 ©.6569866

8 ©.9893582

—0.75¢ . 9 ©.4121185
_1.00| | R | | 10 -0.5440211

0 2 4 6 8 10

Let us add more points...

Putting it on a graph

1.00 f X sin(x)
075! 0. 0.
0.1 ©.09983342
0.50} 0.2 ©.1986693
05| 0.3 ©.2955202
= 0.4 ©.3894183
£ 0.00f 0.5 ©.4794255
? o5l 0.6 0.5646425
0.7 ©.6442177
~0.50} 0.8 ©.7173561
_0.751 0.9 ©.7833269
1. 0.841471
~1.00} | | . | |
0 2 4 6 8 10
« 9.9 -0.4575359

10. -0.5440211
Now we have enough points to join them by a smooth line

Plot multiple lines to compare functions, profiles, etc.

1.00

T

0.75

T

T

0.50
0.25

T

0.00

T

T

=25
—0.50

T

o R

—1.00

Things to avoid

Insufficient number of data points

1.00
0.75¢
0.50 ¢+
0.25¢

0.00+

sin(x)

—-0.25¢}
—0.50¢
—-0.75¢
—1.00¢

Things to avoid

Unlabeled axes

1.00
0.75
0.50
0.25
0.00
—0.25
—0.50
—-0.75
—-1.00

T

T

T

10

Things to avoid

Indistinguishable line styles

1.00r
0.75¢
0.50¢
0.25¢
0.00¢
—0.25¢
—0.50¢
—0.75¢
—1.00¢

— sin(x)
— cos(x)

0 2

10

Scatter plots

Not all data points are suitable to be joined by lines
Consider the observations of star surface temperature (= x) and brightness (= y)

Use scatter plot to study correlation and structures between these features

20 ©83.14508541 15.73

©83.14508541 17.01

1012.83217289 15.86
1012.83217289 15.98
1012.83217289 16.73
- 1195.25068152 10.19
1195.25068152 16.56
1289.42232154 17.99
1384.98930374 15.0

1384.98930374 15.38
1384.98930374 15.39
8 o 1384.98930374 15.56
1384.98930374 15.64
1384.98930374 16.15
1481.51656803 7.86

15¢

Magnitude
=
u o

=20 2000 4000 6000 8000 10000 12000
Temperature

Contour and density plots

For example fields, such as electric potential of a dipole

Electric potential of a dipole Electric potential of a dipole Electric potential of a dipole

4 0.4 4
2 0.2 2
-2 -0.2 -
-4 -0.4 -4

Errors and accuracy

References: Chapter 4 of Computational Physics by Mark Newman
Chapter 1.1 of Numerical Recipes Third Edition by W.H. Press et al.

http://websites.umich.edu/~mejn/cp/chapters/errors.pdf

Integer representation

Numbers on a computer are represented by bits — the sequences of Os and 1s

sign digits : dici
0101 (4 bits) >ien I (ﬁ't(s o
+5 00101 (5 bits) =5

000101 (6 bits) 0101 (5 bit)

+5 = +(1:2°+0-2+1.2% -5 =—-(1:2°40-2"+1-.2%)
Most typical native formats:
 32-bit integer, range —2,147,483,647 (-23!) to +2,147,483,647 (23!)
* 64-bit integer, range ~ —10%8 (-2%3) to +1018 (2%3)
Python supports natively larger numbers but calculations can become slow

In C++ it is important to avoid under/over-flow

Floating-point number representation

Floating-point, or real, numbers are represented by a bit sequence as well,

which are separated into:

o SI gn S Sign Exponent Mantissa
PY Exponent E «— 1Bit—> 11 Bits 52 Bits
* Mantissa M (significant digits) Double Precision

IEEE 754 Floating-Point Standard
L E—e
X=X Mx2 eg. —2195.67 = —2.19567 x 10°

Main consequence: Floating-point numbers are not exact!

For example, with 52 bits in mantissa one can store about 16 decimal digits

32-bit float (single precision) 64-bit float (double precision)
Bits: (sign-exponent-mantissa) 1-8-23 1-11-52
Significant digits: ~7 decimal digits ~16 decimal digits

Range: ~ -1038 to 1038 ~ -103%8 to 10308

Floating-point number representation

When you write
x =1.

What it means

x=1.4¢ep, em ~ 1071 for a 64-bit float

Example: Equality test

X =1.1 + 2.2
print("x = ",x)

if (x == 3.3):

print("x == 3.3 is True")

else:

print("x == 3.3 is False")

You can do instead
print("x = ",x)

The desired precision
eps = 1l.e-12

The comparison
if (abs(x-3.3) < eps):

print("x == 3.3 to a precision of",eps,"is True")

else:

print("x == 3.3 to a precision of",eps,"is False")

X
X

3.
3.

3000000000000003
3 is False

00000000003
to a precision of 1le-12 is True

w w

Error accumulation

x =1 +¢epm, ep ~ 10710 unavoidable round-off error

Errors also accumulate through arithmetic operations,
e.g.

N
Y = ZXI
=1
* oy,~VNey if errors are independent

* oy,~Ney if errors are correlated
* In some cases g), can become “large” even in a single operation

Two large numbers with a small difference

Let us have x =1 and y =1 + 62

Symbolically, one has §~1(y — x) =2 = 1.41421356237..

Let us test this relation on a computer for a very small value of § = 10~ 1%
from math import sqrt

delta = 1l.e-14 le-14 * (y-x) = 1.4210854715202004

x = 1. The accurate value is sqrt(2) = 1.4142135623730951
y = 1. + delta * sqrt(2) The difference is ©0.006871909147105226

res = (1./delta)*(y-x)

print(delta,"* (y-x) = ",res) Catastrophic loss of precision!

print("The accurate value is sqrt(2) = ", sqrt(2)) What happened?

rint("The difference is ", res - sqgrt(2)
g (’ art(2)) significant digits these do not fit

y = 1.000000000000014 142135623730951 ..
x = 1.000000000000000 000000000000000 ...

Quadratic equation

2
ax“+ bx + c =
.
Symbolically, the roots are: — b% —4ac is very close to b
—b+ |\/b2 — 4ac
X1 =
ta 2a

Let us calculate the roots for a = 10™*, b = 10%,¢ = 10~* lac|<<b?
e x1 = -9.094947017729282e-09
s, x2 = -100000000. 0
X1 = (=b + sqrt(bxb - 4.xaxc)) / (2.*a) x, looks ok but x; seems off(?)
X2 = (=b - sqrt(bxb - 4.%axc)) / (2.x*a)
print(*dl =" xl)
print(“x2 =" x7)

Quadratic equation

ax> 4+ bx +c=0

Standard form: Alternative form:

— 2 s 2¢
b+ b —4ac By =

2a —b F \/b* — dac

X12 =

Using the alternative form

x1 = 2xc / (-b - sqrt(bxb-4.%axc)) x1 = -le-08

X2 = 2%C o (_b + Sqrt(b*b_4.*a*c)) X2 = -=109951162.7776
print ("x1 =20) x; is fixed but now x, is off
print("x2 = ", x2)

Solution: Make a judicious choice between standard and alternative form for each root
separately, such that subtraction of two similar number is avoided

Other common situations

' i i " f th ical derivati
* Simple numerical derivative (see the sample code) Accuracy of the numerical derivative
1071} o o
/ f(X _|_ h) T f(X) g 1073+ o o o
f'(x) =~ = .
h g '
E 10-° °
" . T) .
Sometimes a small h is too small - |
10 10 107 104 101
. _ A
* Roots of high-degree polynomials -
Advanced topic: Kahan summation y - Ry

0 1 2 3 45 6 7 8 9 10111213 14 1516 17 18 19 20
z

final project idea(?)

