b]

Computational Physics (PHYS6350)

Lecture 6: Non-linear equations and root-finding

00 05 10 15 20 25 30
X

Instructor: Volodymyr Vovchenko (vvovchenko@uh.edu)

Course materials: https://github.com/vlvovch/PHYS6350-ComputationalPhysics
Online textbook: https://vovchenko.net/computational-physics/

mailto:vvovchenko@uh.edu
https://github.com/vlvovch/PHYS6350-ComputationalPhysics
https://vovchenko.net/computational-physics/

Non-linear equations

Suppose we have an equation f(x) = 0
We can evaluate f(x), but we do not know how to solve it for x

Examples:

* Roots of high-order polynomials (physics example: Lagrange L; point)

 Transcendental equations

* e.g. magnetization equation
IM

M = i tanh ——
AT

References: Chapter 6 of Computational Physics by Mark Newman
Chapter 9 of Numerical Recipes Third Edition by W.H. Press et al.

Root-finding techniques

Numerical root-finding method: iterative process to determine
the root(s) of non-linear equation(s) to desired accuracy

Types:

« Two-point (bracketing)
e Bisection method
* False position method

involves branching

© Wikipedia
e |Local

* Secant method
* Newton-Raphson method (using the derivative)
* Relaxation method

no branching

 Multi-dimensional 7
e Newton method —% % 751 %0

© Wikipedi

* Broyden method Ikipedia

Non-linear equations

Consider an equation

x+e " —-2=0

Bisection method

Bisection method:

1. Find an interval (a, b) which brackets the 1.0} — f)
oot x* e

« x*€ (a,b)
* f(a) & f(b) have opposite signs

f(x)

2. Take the midpoint ¢ = (a + b)/2 and halve
the interval bracketing the root

3. Repeat the process until the desired precision e e
is achieved X
Error: £, = %” (linear)
Method is guaranteed to converge to the root
The error is halved at each step (“linear” convergence)

Bisection method

def bisection_method(

f,
a,
b,

tolerance = 1.e-10,

):
fa = f(a)
fb = f(b)

if (fa * fb > 0.):

return None

The function whose root we are trying to find
The left boundary

The right boundary

The desired accuracy of the solution

The value of the function at the Lleft boundary
The value of the function at the right boundary

H W

Bisection method is not applicable

global last_bisection_iterations
last_bisection_iterations = ©

while ((b-a) > tolerance):
last_bisection_iterations += 1

c=(a+b)/ 2.

fc = f(c)

if (fc * fa < 0.):

b =c

fb = fc
else:

a=c

fa = fc

return (a+b) / 2.

Solving the equation x + e”-x - 2 = @ on an interval (0.0 , 3.0) using bisection method

The solution is x = 1.8414056604233338 obtained with 35 iterations

H*

Take the midpoint
Calculate the function at midpoint

H*®

3+

The midpoint is the new right boundary

H*

The midpoint is the new Lleft boundary

f(x)

Bisection method: how the iterations look like

x+e " —-2=0

Bisection Method: Iteration 1

10— fix)=x+e*-2
® midpoint

Bisection method: another example

Let us consider another equation: x> —x—1=0

20+

15+

10+

Bisection Method: Iteration 1

— fix)=x>—-x-1
® midpoint ’

X1 =1.5

o

00 05 10 15 20 25 3.0

35 iterations in both cases

False position method

False position method:
False position method

1.0 — fix)=x+e*-2

1. Find an interval (a, b) which brackets the | ... secant

® new point

root x* (same as in bisection method)

2. Instead of midpoint take a point where the %
straight line between the endpoints crosses N
the y = 0 axis
b—a
c=a-— f(a)f(b) ~73)
3. Repeat the process until the desired precision : : - :
is achieved

Error: €,,1 = Ceg, (linear)

Method is guaranteed to converge to the root
“Linear” convergence; typically faster than bisection, but not always (see example further)

False position method

def falseposition_method(

f, # The function whose root we are trying to find
a, # The Lleft boundary
b, # The right boundary
tolerance = 1.e-10, # The desired accuracy of the solution
max_iterations = 100 # Maximum number of iterations
):
fa = f(a) # The value of the function at the Lleft boundary
fb = f(b) # The value of the function at the right boundary
if (fa * fb > 0.):
return None # False position method is not applicable
xprev = xnew = (a+b) / 2. # Estimate of the solution from the previous step

global last_falseposition_iterations
last_falseposition_iterations = ©

for i in range(max_iterations):

print("False position method failed to converge to a required precision in
print("The error estimate is

f(x)

last_falseposition_iterations += 1
Xprev = xnew
xnew = a - fa * (b - a) / (fb - fa) # Take the point where straight Line between a and b crosses y = @

fnew = f(xnew) # Calculate the function at midpoint

if (fnew * fa < 0.):

b = xnew # The intersection is the new right boundary
fb = fnew
else:
a = Xxnew # The midpoint is the new left boundary
fa = fnew

if (abs(xnew-xprev) < tolerance):
return xnew

+ str(max_iterations) + iterations™)

, abs(xnew - xprev))

return xnew

Solving the equation x + e”-x - 2 = @ on an interval (0.0 , 3.0) using the false position method
The solution is x = 1.8414056604354012 obtained after 11 iterations

False position method

x+e " —-2=0

False Position Method: Iteration 1

10— fix)=x+e™-2
------ secant
® new point
0.5}
x1 = 1.4635666534811052"
0.0 fmmmmmmmmmmm i m ool
-0.5
_1.0 I 1 1 1 1 1 1 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0

False position vs bisection (to 10 decimal digits)

Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:

Iteration:

Bisection method:

- - -

-

- - -

OVWCoONOOTUVTE WNBR
-

NP RPRRRRRRPRRRR
OV ONOATUDAWNRO®
- - - - - - - - - - - -

w
Ui
-

0O 0O 0O 0 00 0000 0000000000

R RRPRRPRRRPRRRPRRERRRRRRERRRERRENER

. 500000000000000
. 250000000000000
. 875000000000000
.687500000000000
. 781250000000000
.828125000000000
.851562500000000
.839843750000000
.845703125000000
.842773437500000
.841308593750000
.842041015625000
.841674804687500
.841491699218750
.841400146484375
.841445922851562
.841423034667969
.841411590576172
.841405868530273
.841403007507324

.841405660466990

x+e"—-2=0

Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:

False position method:

- - -

-

- - -

OO NGOV WN B
-

-

.
= o
- -

X X X X X X X X X X X

PR RPRRPRRPRRRPRPR

.463566653481105
.809481253839539
.839095511827520
.841240588240115
.841393875903701
.841404819191791
.841405600384506
.841405656150106
.841405660130943
.841405660415115
.841405660435401

False position vs bisection: not always clear who wins

Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:

Iteration:

Bisection method:

- - -

-

- - -

OO NV, WNER
-

-

10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,

35,

O O 0 0 0 0 000 00000000000

P RPRRRPRRPRRRRPRRPRRRRRRRRRLRLROPR

. 500000000000000
. 750000000000000
.125000000000000
.312500000000000
.406250000000000
.359375000000000
.335937500000000
.324218750000000
.330078125000000
.327148437500000
.325683593750000
.324951171875000
.324584960937500
.324768066406250
.324676513671875
.324722290039062
.324699401855469
.324710845947266
.324716567993164
.324719429016113

.324717957206303

xX>—x—1=0

Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:

Iteration:

False position method:

- - -

-

- - -

OO NOUVT A WNBR
-

-

NRPRPRRRPRRRRLRRRR
O VWO NOATUVDAWNRO
- - - - - - - - - - -

a
(o))
-

X X X X X X X X X X X X X X X X X X X X

P RPRRPRRPRRPRPRPRRPRRPRPLPRPRPLPOOCOOOOO®

.125000000000000
.258845437616387
.399230727605107
.541967526475374
.681365453934702
.811265467641601
.926423756077868
.023635980751716
.102112700940041
.163084623011103
.209004461867383
.242759715838447
.267123755869329
.284474915416815
.296712725379603
.305284823099690
.311260149895704
.315411216706803
.318288144277179
.320278742279728

.324717957079699

False position vs bisection: not always clear who wins

Bisection method:

Bisection Method: Iteration 1

— fix)=x>-x-1
20 @ midpoint

15} Y

X1=1.5 ’

20+

15+

xX>—x—1=0

False position method:

False Position Method: Iteration 1

— fix)=x>-x-1
------ secant
® new point

x1 =0.125

More advanced methods combine the two and add other refinements*

* Ridders’ method
e Brent method

final project idea(?)

see chapters 9.2, 9.3 of Numerical Recipes Third Edition by W.H. Press et al.

Secant method

Secant method: same as false position, except the interval need not bracket the root
Always uses the last two points, no branching (if-statement) involved in the procedure

Secant method False position method

10— fix)=x+e™*-2 10— fixX)=x+e™*-2
...... secant "...'.‘ P secant
) e new point

VS

00 05 10 15 20 25 3.0 00 05 1.0 15 20 25 3.0
X X
Typically, “superlinear” convergence occurs when the algorithm is effective.
However, it can still be slower than bisection or may not converge at all (e.g., the secant method may
be parallel to the x-axis).

Secant method

def secant_method(

f, # The function whose root we are trying to find
a, # The Lleft boundary
b, # The right boundary

tolerance = 1.e-10, # The desired accuracy of the solution
max_iterations = 100 # Maximum number of iterations

):

fa = f(a) # The value of the function at the Left boundary
fb = f(b) # The value of the function at the right boundary
Xprev = Xnew = a # Estimate of the solution from the previous step

global last_secant_iterations
last_secant_iterations = ©

f(x)

for i in range(max_iterations):
last_secant_iterations += 1

Xprev = xnew
xnew = a - fa ¥ (b - a) / (fb - fa) # Take the point where straight Line between a and b crosses y = @

fnew = f(xnew) # Calculate the function at midpoint
b =a

fb = fa

a = xnew

fa = fnew

if (abs(xnew-xprev) < tolerance):
return xnew

print(“"Secant method failed to converge to a required precision in " + str(max_iterations) + " iterations")

print("The error estimate is ", abs(xnew - xprev))

return xnew

Error: g,,, = Ce}™® (superlinear)

Solving the equation x + e*-x - 2 = @ on an interval (0.9 , 3.0) using the secant method
The solution is x = 1.8414056604369606 obtained after 7 iterations

Secant method

1.0}

0.5¢

0.0

—1.0¢

x+e " —-2=0

Secant Method: Iteration 1

— fiX)=x+e*X-2

secant
Xn
Xn+1

X = 1.4635666534811052

3.0

Secant method

Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:

O oONOUVAWNBR
-

-

. v .

-

. .

-

PR R RRRR
AUV AN WNREO
- - - - - - -

X X X X X X X X X X X X X X X X

.125000000000000
.015873015873016
.026092564115256
.010979901305751
.006133240911884
.512666258317272
.273834681149844
.287767830907429
.565966235528240
.077368321415013
.947522156044583
.513174359589628
.447558454314033
.325124217388110
.186373891812861
.167930924631363

Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:

17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,

X X X X X X X X X X X X X X X

=

(]

PR RPRRPRRLRLRRLN

@

(ORI

—x—1=0

.058303471905222
.643978481189561
.131674045244213
.933586024088406
.157497929951306
.626623389695762
.226715128003442
.093727500240917
.382563036703896
.310687668369503
.323983763313963
.324727653842468
.324717950607204
.324717957244686
.324717957244746

Secant Method: Iteration 1

20+

15+

— fiX)=x3=-x-1

secant
Xn

Xn+1

x> =0.125

The secant method is not assured to converge since it does not bracket the root.
In this particular example, it eventually succeeded after initially diverging.

Secant method: Choice of interval

xX>—x—1=0

Choose the initial interval as (1,3) instead of (0,3)

20+

15+

10+

Secant Method: Iteration 1

— fix)=x3-x-1

...... secant
o Xn
® Xps+1
x, = 1.0833333333333333
00 05 10 15 20 25 3.0

If possible, select the initial interval as close as possible to the root

Newton-Raphson method

Newton-Raphson method:
* Local method (uses only the current estimate to get the next one)

* Requires the evaluation of the derivative (tangent)
* Not always available or easy to compute

Idea: Assume that a given point x is close to the root x* [f(x*) = (]

Then (Taylor theorem)
fGx) = flo) + fr)(x" = x)
and since f(x*) = 0 we have

R A €D
f(x)

Iterative procedure:
~ f(xn)

xn+1 = xn]cl(x)
n

starting from an initial guess x,

Newton-Raphson method

f(xn)

xn+1 = xn _fl(x)
n

Newton-Raphson method

10— fixX)=x+e™*=2
--- tangent

® X,
0.5F e Xn+1

00 05 1.0 15 20 25 30

(X} - 1 = N 2 I
Quadratic” convergence when works Error: &,,4 = Cey (quadratic)

However, when we are close to f° = 0, we have a problem

Newton-Raphson method

def newton_method(
f,
df,
X0,
tolerance = 1.e-10,
max_iterations = 160

):

Xprev = Xnew = XO

The function whose root we are trying to find
The derivative of the function

The initial guess

The desired accuracy of the solution

Maximum number of iterations

global last_newton_iterations

last_newton_iterations

diff = o.

=0

for i in range(max_iterations):
last_newton_iterations += 1

Xprev = xnew
fval = f(xprev)
dfval = df(xprev)

Xnew = Xprev - fval / dfval

The current function value
The current function derivative value

The next iteration

if (abs(xnew-xprev) < tolerance):

return xnew

print("Newton-Raphson method failed to converge to a required precision in
print("The error estimate is

return xnew

Solving the equation x + e*-x - 2 = @ with an initial guess of x0 =
The solution is x = 1.8414056604369606 obtained after 6 iterations

, abs(xnew-xprev))

Q.

+ str(max_iterations) +

5

iterations™)

Newton-Raphson method

x+e *—2=0
Newton-Raphson Method: Iteration 1
1.0 — fix)=x+e*-=2
--- tangent
o X0
0.5 ® x

0.0 F==========mmmm e el :

-1.0f ==~ X1 =2.770747041268399
00 05 10 15 20 25 3.0

Newton-Raphson method: issues

x—x—-1=0

Newton-Raphson Method: Iteration 1

— fix)=x>=-x-1

—100 -—-- tangent
[X0
-120 X1 = — 5.0 e X1
—3 -2 0 2

Similar issue as with the secant method; the reason: f' = 0 at x = 0.577...

Newton-Raphson method: issues

Try finding the root of f(x) = x3 — 2x + 2 with an initial guess of x, = 0

Newton-Raphson Method: Iteration 1

Iteration 1: f(x,)) =2, f'(x,) = -2 4
_ _ f(xo) _
X1 = Xo flxo) L

Iteration 2: f(x)) =1 f'(x;) =1

_ . _TCa)

2 =0 ey = O

Bl — fix)=x>-2x+2
We are back to x| 51 --- tangent

_ -

X1 = 1.0 X1
3 2 -1 o 5 5
The main issue is, again, we have points with f* = 0in the neighborhood

Relaxation method

 (Cast the equation f(x) = 0 in a form

x = p(x)
* For example ¢@(x) = f(x) + x but this choice is not unique

* The root is approximated by an iterative procedure

Xn+1 — Qp(Xn)
Convergence criterion:

0" (xn)] < 1, for all x;,

Relaxation method

def relaxation_method(
phi, # The function from the equation x = phi(x)
X0, # The initial guess
tolerance = 1.e-10, # The desired accuracy of the solution
max_iterations = 100 # Maximum number of iterations

Xprev = xnew = XO

global last_relaxation_iterations
last_relaxation_iterations = ©

for i in range(max_iterations):
last_relaxation_iterations += 1

Xprev = xnew
xnew = phi(xprev) # The next iteration

if (abs(xnew-xprev) < tolerance):
return xnew

print("The relaxation method failed to converge to a required precision in " + str(max_iterations) + " iterations")

print("The error estimate is ", abs(xnew - xprev))

return xnew

Relaxation method

X+e =2

0

as

Starting with x;=0.5 we have

Solving the equation x =

Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:

The solution is x

0, X

=
- - - -
x

-

-

W o NV WN
-

[
R ®
- - -

12,
13,
14,
15,

-
X X X X X X X X X X X X X X

X

RPRRPRRPRRRPRRPRRREPRRRLRRLRON

1.

=2—e " l.e. p(x) =2—e~
- er-x with relaxation method an initial guess of x@ = 0.5
.500000000000000, phi(x) = 1.393469340287367
.393469340287367, phi(x) = 1.751787325113973
.751787325113973, phi(x) = 1.826536369684999
.826536369684999, phi(x) = 1.839029855597129
.839029855597129, phi(x) = 1.841028423293983
.841028423293983, phi(x) = 1.841345821475382
.841345821475382, phi(x) = 1.841396170032424
.841396170032424, phi(x) = 1.841404155305379
.841404155305379, phi(x) = 1.841405421731432
.841405421731432, phi(x) = 1.841405622579610
.841405622579610, phi(x) = 1.841405654432999
.841405654432999, phi(x) = 1.841405659484766
.841405659484766, phi(x) = 1.841405660285948
.841405660285948, phi(x) = 1.841405660413011
.841405660413011, phi(x) = 1.841405660433162
841405660433162, phi(x) = 1.841405660436358

1.8414056604331623 obtained after

15 iterations

Not as fast as Newton-Raphson but does not require evaluation of the derivative

Relaxation method

X*—x—1=0 as x=x>—1 i.e. o(x) = x> — 1

Starting with x,=0 we have

Solving the equation x = x*3 - 1 with relaxation method an initial guess of x0 = 0.0

Iteration: 0, X
Iteration: 1, x
Iteration: 2, X
Iteration: 3, X
Iteration: 4, X
Iteration: 5, X
Iteration: 6, X

-1.000000000000000
-2.000000000000000
-9.000000000000000

0.000000000000000, phi(x)
-1.000000000000000, phi(x)
-2.000000000000000, phi(x)
-9.000000000000000, phi(x) -730.000000000000000

-730.000000000000000, phi(x) -389017001.000000000000000
-389017001.000000000000000, phi(x) = -58871587162270591457689600.000000000000000
-58871587162270591457689600 .000000000000000, phi(x) = -20404090132275264698947825968051310952675782605

6202557355691431285390611316736.000000000000000

7, X = -204040901322752646989478259680513109526757826056202557355691431285390611316736.000000000000000, phi
(x) = -849477147223738769124261153859947219933304503407088864329587058315002861225858314510130211954336728493261609772281413
1127104275290993706669943943557518825041720139256751756296514363510463501782805696167407096791414943273033163341824.00000000

Iteration:

0000000

Divergent!

Reason: [¢'(xn)| <1 violated [try to come up with a better choice of ¢(x)7?]

Summary

f(x)

f(x)

1.0

0.5

0.0

-1.0

1.0

-1.0

Iteration 1

F— fix)=x+e™*-2
e midpoint

x1=15

Secant method iteration 1

F— fix)=x+e*-2
...... Secant

o X,

Xn+1

X2 = 1.4635666534811057

f(x)

f(x)

1.0t

-1.0r

1.0

0.5¢

0.0

—-0.5}

-1.0f

False position method iteration 1

— fiX)=x+e*-2
------ secant
® new point

x1 = 1.4635666534811052-"

1.0 15 2.0 2.5 3.0

Newton-Raphson iteration 1

— fixX)=x+e™*=-2
--- tangent

® X

e X

== Xx1=2.770747041268399

00 05 10 15 20 25 30

X

Summary

Bisection method: False position method:
 (Guaranteed to converge with a fixed rate * Guaranteed to converge
e« Need to bracket the root * Can be faster than bisection but not always

e Need to bracket the root

Secant method: Newton-Raphson method:

« Typically faster than bisection/false position Very fast when converges
 May not always converge e (Can be sensitive to initial guess
* Does not need derivative * May not converge if f'(x) =0

* Requires evaluation of the derivative
at each step
Relaxation method:
* Simple to implement
 Does not require derivative
* Often does not converge

Summary

Method Convergence Rate Requires Derivative? |Guaranteed to Converge?
Bisection Linear O(1/2") X
False Position Linear (but variable) X
Secant Superlinear O(e~(1+@n) |X X
Newton-Raphson |Quadratic O(e=2") X
Relaxation Variable X X

