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Computational Physics (PHYS6350)

Lecture 6: Non-linear equations and root-finding
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Instructor: Volodymyr Vovchenko (vvovchenko@uh.edu)

Course materials: https://github.com/vlvovch/PHYS6350-ComputationalPhysics
Online textbook: https://vovchenko.net/computational-physics/
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Non-linear equations

Suppose we have an equation f(x) = 0
We can evaluate f(x), but we do not know how to solve it for x

Examples:

* Roots of high-order polynomials (physics example: Lagrange L; point)

 Transcendental equations

* e.g. magnetization equation
IM

M = i tanh ——
AT

References:  Chapter 6 of Computational Physics by Mark Newman
Chapter 9 of Numerical Recipes Third Edition by W.H. Press et al.



Root-finding techniques

Numerical root-finding method: iterative process to determine
the root(s) of non-linear equation(s) to desired accuracy

Types:

« Two-point (bracketing)
e Bisection method
* False position method

involves branching

© Wikipedia
e |Local

* Secant method
* Newton-Raphson method (using the derivative)
* Relaxation method

no branching

 Multi-dimensional 7
e Newton method —% % 751 %0

© Wikipedi

* Broyden method Ikipedia




Non-linear equations

Consider an equation

x+e " —-2=0




Bisection method

Bisection method:

1. Find an interval (a, b) which brackets the 1.0} — f)
oot x* e

« x*€ (a,b)
* f(a) & f(b) have opposite signs

f(x)

2. Take the midpoint ¢ = (a + b)/2 and halve
the interval bracketing the root

3. Repeat the process until the desired precision e e
is achieved X
Error: £, = %” (linear)
Method is guaranteed to converge to the root
The error is halved at each step (“linear” convergence)



Bisection method

def bisection_method(

f,
a,
b,

tolerance = 1.e-10,

):
fa = f(a)
fb = f(b)

if (fa * fb > 0.):

return None

# The function whose root we are trying to find
# The left boundary

# The right boundary

# The desired accuracy of the solution

The value of the function at the Lleft boundary
The value of the function at the right boundary

H W

# Bisection method is not applicable

global last_bisection_iterations
last_bisection_iterations = ©

while ((b-a) > tolerance):
last_bisection_iterations += 1

c=(a+b)/ 2.

fc = f(c)

if (fc * fa < 0.):

b =c

fb = fc
else:

a=c

fa = fc

return (a+b) / 2.

Solving the equation x + e”-x - 2 = @ on an interval ( 0.0 , 3.0 ) using bisection method

The solution is x = 1.8414056604233338 obtained with 35 iterations

H*

Take the midpoint
Calculate the function at midpoint

H*®

3+

The midpoint is the new right boundary

H*

The midpoint is the new Lleft boundary

f(x)




Bisection method: how the iterations look like

x+e " —-2=0

Bisection Method: Iteration 1

10— fix)=x+e*-2
® midpoint




Bisection method: another example

Let us consider another equation: x> —x—1=0

20+

15+

10+

Bisection Method: Iteration 1

— fix)=x>—-x-1
® midpoint ’

X1 =1.5

o

00 05 10 15 20 25 3.0

35 iterations in both cases




False position method

False position method:
False position method

1.0 — fix)=x+e*-2

1. Find an interval (a, b) which brackets the | ... secant

® new point

root x* (same as in bisection method)

2. Instead of midpoint take a point where the %
straight line between the endpoints crosses N
the y = 0 axis
b—a
c=a-— f(a)f(b) ~73)
3. Repeat the process until the desired precision : : - :
is achieved

Error: €,,1 = Ceg, (linear)

Method is guaranteed to converge to the root
“Linear” convergence; typically faster than bisection, but not always (see example further)



False position method

def falseposition_method(

f, # The function whose root we are trying to find
a, # The Lleft boundary
b, # The right boundary
tolerance = 1.e-10, # The desired accuracy of the solution
max_iterations = 100 # Maximum number of iterations
):
fa = f(a) # The value of the function at the Lleft boundary
fb = f(b) # The value of the function at the right boundary
if (fa * fb > 0.):
return None # False position method is not applicable
xprev = xnew = (a+b) / 2. # Estimate of the solution from the previous step

global last_falseposition_iterations
last_falseposition_iterations = ©

for i in range(max_iterations):

print("False position method failed to converge to a required precision in
print("The error estimate is

f(x)

last_falseposition_iterations += 1
Xprev = xnew
xnew = a - fa * (b - a) / (fb - fa) # Take the point where straight Line between a and b crosses y = @

fnew = f(xnew) # Calculate the function at midpoint

if (fnew * fa < 0.):

b = xnew # The intersection is the new right boundary
fb = fnew
else:
a = Xxnew # The midpoint is the new left boundary
fa = fnew

if (abs(xnew-xprev) < tolerance):
return xnew

+ str(max_iterations) + iterations™)

, abs(xnew - xprev))

return xnew

Solving the equation x + e”-x - 2 = @ on an interval ( 0.0 , 3.0 ) using the false position method
The solution is x = 1.8414056604354012 obtained after 11 iterations




False position method

x+e " —-2=0

False Position Method: Iteration 1

10— fix)=x+e™-2
------ secant
® new point
0.5}
x1 = 1.4635666534811052"
0.0 fmmmmmmmmmmm i m ool
-0.5
_1.0 I 1 1 1 1 1 1 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0



False position vs bisection (to 10 decimal digits)

Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:

Iteration:

Bisection method:
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. 500000000000000
. 250000000000000
. 875000000000000
.687500000000000
. 781250000000000
.828125000000000
.851562500000000
.839843750000000
.845703125000000
.842773437500000
.841308593750000
.842041015625000
.841674804687500
.841491699218750
.841400146484375
.841445922851562
.841423034667969
.841411590576172
.841405868530273
.841403007507324

.841405660466990

x+e"—-2=0

Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:

False position method:
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.463566653481105
.809481253839539
.839095511827520
.841240588240115
.841393875903701
.841404819191791
.841405600384506
.841405656150106
.841405660130943
.841405660415115
.841405660435401



False position vs bisection: not always clear who wins

Iteration:
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Iteration:

Bisection method:
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.125000000000000
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.406250000000000
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.335937500000000
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.330078125000000
.327148437500000
.325683593750000
.324951171875000
.324584960937500
.324768066406250
.324676513671875
.324722290039062
.324699401855469
.324710845947266
.324716567993164
.324719429016113

.324717957206303

xX>—x—1=0

Iteration:
Iteration:
Iteration:
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False position method:
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.125000000000000
.258845437616387
.399230727605107
.541967526475374
.681365453934702
.811265467641601
.926423756077868
.023635980751716
.102112700940041
.163084623011103
.209004461867383
.242759715838447
.267123755869329
.284474915416815
.296712725379603
.305284823099690
.311260149895704
.315411216706803
.318288144277179
.320278742279728

.324717957079699



False position vs bisection: not always clear who wins

Bisection method:

Bisection Method: Iteration 1

— fix)=x>-x-1
20 @ midpoint

15} Y

X1=1.5 ’

20+

15+

xX>—x—1=0

False position method:

False Position Method: Iteration 1

— fix)=x>-x-1
------ secant
® new point

x1 =0.125

More advanced methods combine the two and add other refinements*

* Ridders’ method
e Brent method

final project idea(?)

see chapters 9.2, 9.3 of Numerical Recipes Third Edition by W.H. Press et al.




Secant method

Secant method: same as false position, except the interval need not bracket the root
Always uses the last two points, no branching (if-statement) involved in the procedure

Secant method False position method

10— fix)=x+e™*-2 10— fixX)=x+e™*-2
...... secant "...'.‘ P secant
) e new point

VS

00 05 10 15 20 25 3.0 00 05 1.0 15 20 25 3.0
X X
Typically, “superlinear” convergence occurs when the algorithm is effective.
However, it can still be slower than bisection or may not converge at all (e.g., the secant method may
be parallel to the x-axis).



Secant method

def secant_method(

f, # The function whose root we are trying to find
a, # The Lleft boundary
b, # The right boundary

tolerance = 1.e-10, # The desired accuracy of the solution
max_iterations = 100 # Maximum number of iterations

):

fa = f(a) # The value of the function at the Left boundary
fb = f(b) # The value of the function at the right boundary
Xprev = Xnew = a # Estimate of the solution from the previous step

global last_secant_iterations
last_secant_iterations = ©

f(x)

for i in range(max_iterations):
last_secant_iterations += 1

Xprev = xnew
xnew = a - fa ¥ (b - a) / (fb - fa) # Take the point where straight Line between a and b crosses y = @

fnew = f(xnew) # Calculate the function at midpoint
b =a

fb = fa

a = xnew

fa = fnew

if (abs(xnew-xprev) < tolerance):
return xnew

print(“"Secant method failed to converge to a required precision in " + str(max_iterations) + " iterations")

print("The error estimate is ", abs(xnew - xprev))

return xnew

Error: g,,, = Ce}™® (superlinear)

Solving the equation x + e*-x - 2 = @ on an interval ( 0.9 , 3.0 ) using the secant method
The solution is x = 1.8414056604369606 obtained after 7 iterations



Secant method

1.0}

0.5¢

0.0

—1.0¢

x+e " —-2=0

Secant Method: Iteration 1

— fiX)=x+e*X-2

secant
Xn
Xn+1

X = 1.4635666534811052

3.0




Secant method

Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
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.125000000000000
.015873015873016
.026092564115256
.010979901305751
.006133240911884
.512666258317272
.273834681149844
.287767830907429
.565966235528240
.077368321415013
.947522156044583
.513174359589628
.447558454314033
.325124217388110
.186373891812861
.167930924631363

Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:

17,
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24,
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29,
30,
31,
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=
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(ORI

—x—1=0

.058303471905222
.643978481189561
.131674045244213
.933586024088406
.157497929951306
.626623389695762
.226715128003442
.093727500240917
.382563036703896
.310687668369503
.323983763313963
.324727653842468
.324717950607204
.324717957244686
.324717957244746

Secant Method: Iteration 1

20+

15+

— fiX)=x3=-x-1

secant
Xn

Xn+1

x> =0.125

The secant method is not assured to converge since it does not bracket the root.
In this particular example, it eventually succeeded after initially diverging.




Secant method: Choice of interval

xX>—x—1=0

Choose the initial interval as (1,3) instead of (0,3)

20+

15+

10+

Secant Method: Iteration 1

— fix)=x3-x-1

...... secant
o Xn
® Xps+1
x, = 1.0833333333333333
00 05 10 15 20 25 3.0

If possible, select the initial interval as close as possible to the root



Newton-Raphson method

Newton-Raphson method:
* Local method (uses only the current estimate to get the next one)

* Requires the evaluation of the derivative (tangent)
* Not always available or easy to compute

Idea: Assume that a given point x is close to the root x* [f(x*) = (]

Then (Taylor theorem)
fGx) = flo) + fr)(x" = x)
and since f(x*) = 0 we have

R A €D
f(x)

Iterative procedure:
~ f(xn)

xn+1 = xn ]cl(x )
n

starting from an initial guess x,



Newton-Raphson method

f(xn)

xn+1 = xn _fl(x )
n

Newton-Raphson method

10— fixX)=x+e™*=2
--- tangent

® X,
0.5F e Xn+1

00 05 1.0 15 20 25 30

(X} - 1 = N 2 I
Quadratic” convergence when works Error: &,,4 = Cey (quadratic)

However, when we are close to f° = 0, we have a problem



Newton-Raphson method

def newton_method(
f,
df,
X0,
tolerance = 1.e-10,
max_iterations = 160

):

Xprev = Xnew = XO

# The function whose root we are trying to find
# The derivative of the function

# The initial guess

# The desired accuracy of the solution

# Maximum number of iterations

global last_newton_iterations

last_newton_iterations

diff = o.

=0

for i in range(max_iterations):
last_newton_iterations += 1

Xprev = xnew
fval = f(xprev)
dfval = df(xprev)

Xnew = Xprev - fval / dfval

# The current function value
# The current function derivative value

# The next iteration

if (abs(xnew-xprev) < tolerance):

return xnew

print("Newton-Raphson method failed to converge to a required precision in
print("The error estimate is

return xnew

Solving the equation x + e*-x - 2 = @ with an initial guess of x0 =
The solution is x = 1.8414056604369606 obtained after 6 iterations

, abs(xnew-xprev))

Q.

+ str(max_iterations) +

5

iterations™)




Newton-Raphson method

x+e *—2=0
Newton-Raphson Method: Iteration 1
1.0 — fix)=x+e*-=2
--- tangent
o X0
0.5 ® x

0.0 F==========mmmm e el :

-1.0f ==~ X1 =2.770747041268399
00 05 10 15 20 25 3.0




Newton-Raphson method: issues

x—x—-1=0

Newton-Raphson Method: Iteration 1

— fix)=x>=-x-1

—100 -—-- tangent
[ X0
-120 X1 = — 5.0 e X1
—3 -2 0 2

Similar issue as with the secant method; the reason: f' = 0 at x = 0.577...



Newton-Raphson method: issues

Try finding the root of f(x) = x3 — 2x + 2 with an initial guess of x, = 0

Newton-Raphson Method: Iteration 1

Iteration 1: f(x,)) =2, f'(x,) = -2 4
_ _ f(xo) _
X1 = Xo flxo) L

Iteration 2: f(x)) =1 f'(x;) =1

_ . _TCa)

2 =0 ey = O

Bl — fix)=x>-2x+2
We are back to x| 51 --- tangent

_ -

X1 = 1.0 X1
3 2 -1 o 5 5
The main issue is, again, we have points with f* = 0in the neighborhood




Relaxation method

 (Cast the equation f(x) = 0 in a form

x = p(x)
* For example ¢@(x) = f(x) + x but this choice is not unique

* The root is approximated by an iterative procedure

Xn+1 — Qp(Xn)
Convergence criterion:

0" (xn)] < 1, for all x;,



Relaxation method

def relaxation_method(
phi, # The function from the equation x = phi(x)
X0, # The initial guess
tolerance = 1.e-10, # The desired accuracy of the solution
max_iterations = 100 # Maximum number of iterations

Xprev = xnew = XO

global last_relaxation_iterations
last_relaxation_iterations = ©

for i in range(max_iterations):
last_relaxation_iterations += 1

Xprev = xnew
xnew = phi(xprev) # The next iteration

if (abs(xnew-xprev) < tolerance):
return xnew

print("The relaxation method failed to converge to a required precision in " + str(max_iterations) + " iterations")

print("The error estimate is ", abs(xnew - xprev))

return xnew



Relaxation method

X+e =2

0

as

Starting with x;=0.5 we have

Solving the equation x =

Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:

The solution is x

0, X

=
- - - -
x

-

-

W o NV WN
-

[
R ®
- - -

12,
13,
14,
15,

-
X X X X X X X X X X X X X X

X

RPRRPRRPRRRPRRPRRREPRRRLRRLRON

1.

=2—e " l.e. p(x) =2—e~
- er-x with relaxation method an initial guess of x@ = 0.5
.500000000000000, phi(x) = 1.393469340287367
.393469340287367, phi(x) = 1.751787325113973
.751787325113973, phi(x) = 1.826536369684999
.826536369684999, phi(x) = 1.839029855597129
.839029855597129, phi(x) = 1.841028423293983
.841028423293983, phi(x) = 1.841345821475382
.841345821475382, phi(x) = 1.841396170032424
.841396170032424, phi(x) = 1.841404155305379
.841404155305379, phi(x) = 1.841405421731432
.841405421731432, phi(x) = 1.841405622579610
.841405622579610, phi(x) = 1.841405654432999
.841405654432999, phi(x) = 1.841405659484766
.841405659484766, phi(x) = 1.841405660285948
.841405660285948, phi(x) = 1.841405660413011
.841405660413011, phi(x) = 1.841405660433162
841405660433162, phi(x) = 1.841405660436358

1.8414056604331623 obtained after

15 iterations

Not as fast as Newton-Raphson but does not require evaluation of the derivative



Relaxation method

X*—x—1=0 as x=x>—1 i.e. o(x) = x> — 1

Starting with x,=0 we have

Solving the equation x = x*3 - 1 with relaxation method an initial guess of x0 = 0.0

Iteration: 0, X
Iteration: 1, x
Iteration: 2, X
Iteration: 3, X
Iteration: 4, X
Iteration: 5, X
Iteration: 6, X

-1.000000000000000
-2.000000000000000
-9.000000000000000

0.000000000000000, phi(x)
-1.000000000000000, phi(x)
-2.000000000000000, phi(x)
-9.000000000000000, phi(x) -730.000000000000000

-730.000000000000000, phi(x) -389017001.000000000000000
-389017001.000000000000000, phi(x) = -58871587162270591457689600.000000000000000
-58871587162270591457689600 .000000000000000, phi(x) = -20404090132275264698947825968051310952675782605

6202557355691431285390611316736.000000000000000

7, X = -204040901322752646989478259680513109526757826056202557355691431285390611316736.000000000000000, phi
(x) = -849477147223738769124261153859947219933304503407088864329587058315002861225858314510130211954336728493261609772281413
1127104275290993706669943943557518825041720139256751756296514363510463501782805696167407096791414943273033163341824.00000000

Iteration:

0000000

Divergent!

Reason: [¢'(xn)| <1 violated [try to come up with a better choice of ¢(x)7?]



Summary

f(x)

f(x)

1.0

0.5

0.0

-1.0

1.0

-1.0

Iteration 1

F— fix)=x+e™*-2
e midpoint

x1=15

Secant method iteration 1

F— fix)=x+e*-2
...... Secant

o X,

Xn+1

X2 = 1.4635666534811057

f(x)

f(x)

1.0t

-1.0r

1.0

0.5¢

0.0

—-0.5}

-1.0f

False position method iteration 1

— fiX)=x+e*-2
------ secant
® new point

x1 = 1.4635666534811052-"

1.0 15 2.0 2.5 3.0

Newton-Raphson iteration 1

— fixX)=x+e™*=-2
--- tangent

® X

e X

== Xx1=2.770747041268399

00 05 10 15 20 25 30

X




Summary

Bisection method: False position method:
 (Guaranteed to converge with a fixed rate *  Guaranteed to converge
e« Need to bracket the root * Can be faster than bisection but not always

e Need to bracket the root

Secant method: Newton-Raphson method:

«  Typically faster than bisection/false position  Very fast when converges
 May not always converge e (Can be sensitive to initial guess
* Does not need derivative * May not converge if f'(x) =0

* Requires evaluation of the derivative
at each step
Relaxation method:
* Simple to implement
 Does not require derivative
*  Often does not converge



Summary

Method Convergence Rate Requires Derivative? |Guaranteed to Converge?
Bisection Linear O(1/2") X
False Position Linear (but variable) X
Secant Superlinear O(e~(1+@n) |X X
Newton-Raphson |Quadratic O(e=2") X
Relaxation Variable X X




