

# **Computational Physics (PHYS6350)**

Lecture 6: Non-linear equations and root-finding



#### **Instructor:** Volodymyr Vovchenko (vvovchenko@uh.edu)

**Course materials:** <u>https://github.com/vlvovch/PHYS6350-ComputationalPhysics</u> **Online textbook:** <u>https://vovchenko.net/computational-physics/</u> Suppose we have an equation f(x) = 0

We can evaluate f(x), but we do not know how to solve it for x

#### **Examples:**

- Roots of high-order polynomials (physics example: Lagrange L<sub>1</sub> point)
- Transcendental equations
  - e.g. magnetization equation

$$M = \mu \tanh rac{JM}{k_B T}$$

References: Chapter 6 of Computational Physics by Mark Newman Chapter 9 of Numerical Recipes Third Edition by W.H. Press et al. **Numerical root-finding method:** iterative process to determine the root(s) of non-linear equation(s) to desired accuracy

#### Types:

- Two-point (bracketing)
  - Bisection method
  - False position method
- Local
  - Secant method
  - Newton-Raphson method (using the derivative)
  - Relaxation method
- Multi-dimensional
  - Newton method
  - Broyden method





F(x)

F(a<sub>1</sub>)



 $\ensuremath{\mathbb{C}}$  Wikipedia

#### no branching

## **Non-linear equations**

Consider an equation

$$x+e^{-x}-2=0$$



#### **Bisection method:**

- 1. Find an interval (a, b) which brackets the root  $x^*$ 
  - $x^* \in (a, b)$
  - f(a) & f(b) have opposite signs
- 2. Take the midpoint c = (a + b)/2 and halve the interval bracketing the root
- 3. Repeat the process until the desired precision is achieved

Method is guaranteed to converge to the root The error is halved at each step ("linear" convergence)



**Error:** 
$$\varepsilon_{n+1} = \frac{\varepsilon_n}{2}$$
 (linear)

## **Bisection method**



Solving the equation  $x + e^{-x} - 2 = 0$  on an interval ( 0.0 , 3.0 ) using bisection method The solution is x = 1.8414056604233338 obtained with 35 iterations

#### **Bisection method: how the iterations look like**

$$x+e^{-x}-2=0$$



## **Bisection method: another example**

Let us consider another equation:  $x^3 - x - 1 = 0$ 



35 iterations in both cases

#### False position method:

- 1. Find an interval (a, b) which brackets the root  $x^*$  (same as in bisection method)
- 2. Instead of midpoint take a point where the straight line between the endpoints crosses the y = 0 axis

$$c = a - f(a)\frac{b - a}{f(b) - f(a)}$$

3. Repeat the process until the desired precision is achieved

Method is guaranteed to converge to the root "Linear" convergence; typically faster than bisection, but not always (see example further)



**Error**:  $\varepsilon_{n+1} \approx C \varepsilon_n$  (linear)

## **False position method**

| def | falseposition_method(                                                                                                                                           |                                                                                                                                                                  |  |  |  |  |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|     | f,                                                                                                                                                              | the function whose root we are trying to find                                                                                                                    |  |  |  |  |  |
|     | a,                                                                                                                                                              | t The Left boundary                                                                                                                                              |  |  |  |  |  |
|     | b, # The right boundary                                                                                                                                         |                                                                                                                                                                  |  |  |  |  |  |
|     | tolerance = 1.e-10,                                                                                                                                             | t The desired accuracy of the solution                                                                                                                           |  |  |  |  |  |
|     | <pre>max_iterations = 100</pre>                                                                                                                                 | t Maximum number of iterations                                                                                                                                   |  |  |  |  |  |
|     | ):                                                                                                                                                              |                                                                                                                                                                  |  |  |  |  |  |
|     | fa = f(a)                                                                                                                                                       | # The value of the function at the left boundary                                                                                                                 |  |  |  |  |  |
|     | fb = f(b)                                                                                                                                                       | # The value of the function at the right boundary                                                                                                                |  |  |  |  |  |
|     | <b>if</b> (fa * fb > 0.):                                                                                                                                       |                                                                                                                                                                  |  |  |  |  |  |
|     | return None                                                                                                                                                     | # False position method is not applicable                                                                                                                        |  |  |  |  |  |
|     | <pre>xprev = xnew = (a+b) /</pre>                                                                                                                               | 2. <i># Estimate of the solution from the previous step</i>                                                                                                      |  |  |  |  |  |
|     | <pre>last_falseposition_ite for i in range(max_ite last_falseposition     xprev = xnew     xnew = a - fa * (b     fnew = f(xnew)     if (fnew * fa &lt; 0</pre> | <pre>rations = 0 rations): iterations += 1 - a) / (fb - fa) # Take the point where straight line between a and b crosses y = 0</pre>                             |  |  |  |  |  |
|     | b = xnew<br>fb = fnew                                                                                                                                           | . # The intersection is the new right boundary                                                                                                                   |  |  |  |  |  |
|     | else:                                                                                                                                                           |                                                                                                                                                                  |  |  |  |  |  |
|     | a = xnew<br>fa = fnew                                                                                                                                           | # The midpoint is the new left boundary                                                                                                                          |  |  |  |  |  |
|     | if (abs(xnew-xprev<br>return xnew                                                                                                                               | < tolerance):                                                                                                                                                    |  |  |  |  |  |
|     | <pre>else:<br/>a = xnew<br/>fa = fnew<br/>if (abs(xnew-xprev<br/>return xnew<br/>print("False position</pre>                                                    | <pre># The midpoint is the new Left boundary &lt; tolerance): method failed to converge to a required precision in " + str(max iterations) + " iterations"</pre> |  |  |  |  |  |
|     | print("The error estim                                                                                                                                          | te is ", abs(xnew - xprev))                                                                                                                                      |  |  |  |  |  |

 $x + e^{-x} - 2 = 0$ 



**return** xnew

Solving the equation  $x + e^{-x} - 2 = 0$  on an interval ( 0.0 , 3.0 ) using the false position method The solution is x = 1.8414056604354012 obtained after 11 iterations

## **False position method**

$$x+e^{-x}-2=0$$



# False position vs bisection (to 10 decimal digits)

 $x + e^{-x} - 2 = 0$ 

#### **Bisection method:**

| Iteration:1, c =1.5000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |     |   |   |                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----|---|---|--------------------|
| Iteration:2, c =2.2500000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Iteration: | 1,  | с | = | 1.5000000000000000 |
| Iteration:3, c =1.875000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Iteration: | 2,  | с | = | 2.250000000000000  |
| Iteration:4, c =1.6875000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Iteration: | 3,  | с | = | 1.875000000000000  |
| Iteration:5, c = $1.78125000000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Iteration: | 4,  | с | = | 1.687500000000000  |
| Iteration:6, c = $1.82812500000000$ Iteration:7, c = $1.85156250000000$ Iteration:8, c = $1.83984375000000$ Iteration:9, c = $1.845703125000000$ Iteration:10, c = $1.842773437500000$ Iteration:11, c = $1.841308593750000$ Iteration:12, c = $1.842041015625000$ Iteration:13, c = $1.841674804687500$ Iteration:14, c = $1.841400146484375$ Iteration:16, c = $1.841445922851562$ Iteration:17, c = $1.841423034667969$ Iteration:18, c = $1.841405868530273$ Iteration:19, c = $1.841403007507324$                                         | Iteration: | 5,  | С | = | 1.781250000000000  |
| Iteration:7, c = $1.85156250000000$ Iteration:8, c = $1.83984375000000$ Iteration:9, c = $1.845703125000000$ Iteration:10, c = $1.842773437500000$ Iteration:11, c = $1.841308593750000$ Iteration:12, c = $1.842041015625000$ Iteration:13, c = $1.841674804687500$ Iteration:14, c = $1.841491699218750$ Iteration:16, c = $1.841400146484375$ Iteration:16, c = $1.841445922851562$ Iteration:17, c = $1.841423034667969$ Iteration:19, c = $1.841405868530273$ Iteration:20, c = $1.841403007507324$                                       | Iteration: | 6,  | С | = | 1.828125000000000  |
| Iteration: $8, c =$ $1.83984375000000$ Iteration: $9, c =$ $1.84570312500000$ Iteration: $10, c =$ $1.84277343750000$ Iteration: $11, c =$ $1.84207343750000$ Iteration: $11, c =$ $1.841308593750000$ Iteration: $12, c =$ $1.842041015625000$ Iteration: $13, c =$ $1.841674804687500$ Iteration: $14, c =$ $1.841491699218750$ Iteration: $15, c =$ $1.841400146484375$ Iteration: $16, c =$ $1.841445922851562$ Iteration: $17, c =$ $1.841423034667969$ Iteration: $19, c =$ $1.841405868530273$ Iteration: $20, c =$ $1.841403007507324$ | Iteration: | 7,  | с | = | 1.851562500000000  |
| Iteration:9, c = $1.84570312500000$ Iteration:10, c = $1.84277343750000$ Iteration:11, c = $1.841308593750000$ Iteration:12, c = $1.842041015625000$ Iteration:13, c = $1.841674804687500$ Iteration:14, c = $1.841491699218750$ Iteration:15, c = $1.841400146484375$ Iteration:16, c = $1.841445922851562$ Iteration:17, c = $1.841423034667969$ Iteration:18, c = $1.841405868530273$ Iteration:20, c = $1.841403007507324$                                                                                                                 | Iteration: | 8,  | с | = | 1.839843750000000  |
| Iteration:10, c = $1.842773437500000$ Iteration:11, c = $1.841308593750000$ Iteration:12, c = $1.842041015625000$ Iteration:13, c = $1.841674804687500$ Iteration:14, c = $1.841491699218750$ Iteration:15, c = $1.841400146484375$ Iteration:16, c = $1.841445922851562$ Iteration:17, c = $1.841423034667969$ Iteration:18, c = $1.841405868530273$ Iteration:20, c = $1.841403007507324$                                                                                                                                                    | Iteration: | 9,  | с | = | 1.845703125000000  |
| Iteration:11, c =1.841308593750000Iteration:12, c =1.842041015625000Iteration:13, c =1.841674804687500Iteration:14, c =1.841491699218750Iteration:15, c =1.841400146484375Iteration:16, c =1.841445922851562Iteration:17, c =1.841423034667969Iteration:18, c =1.841411590576172Iteration:19, c =1.841403007507324                                                                                                                                                                                                                             | Iteration: | 10, | С | = | 1.842773437500000  |
| Iteration:12, c =1.842041015625000Iteration:13, c =1.841674804687500Iteration:14, c =1.841491699218750Iteration:15, c =1.841400146484375Iteration:16, c =1.841445922851562Iteration:17, c =1.841423034667969Iteration:18, c =1.841411590576172Iteration:19, c =1.841405868530273Iteration:20, c =1.841403007507324                                                                                                                                                                                                                             | Iteration: | 11, | с | = | 1.841308593750000  |
| Iteration:13, c =1.841674804687500Iteration:14, c =1.841491699218750Iteration:15, c =1.841400146484375Iteration:16, c =1.841445922851562Iteration:17, c =1.841423034667969Iteration:18, c =1.841411590576172Iteration:19, c =1.841405868530273Iteration:20, c =1.841403007507324                                                                                                                                                                                                                                                               | Iteration: | 12, | С | = | 1.842041015625000  |
| Iteration:14, c =1.841491699218750Iteration:15, c =1.841400146484375Iteration:16, c =1.841445922851562Iteration:17, c =1.841423034667969Iteration:18, c =1.841411590576172Iteration:19, c =1.841405868530273Iteration:20, c =1.841403007507324                                                                                                                                                                                                                                                                                                 | Iteration: | 13, | с | = | 1.841674804687500  |
| Iteration: 15, c = 1.841400146484375<br>Iteration: 16, c = 1.841445922851562<br>Iteration: 17, c = 1.841423034667969<br>Iteration: 18, c = 1.841411590576172<br>Iteration: 19, c = 1.841405868530273<br>Iteration: 20, c = 1.841403007507324                                                                                                                                                                                                                                                                                                   | Iteration: | 14, | с | = | 1.841491699218750  |
| Iteration: 16, c = 1.841445922851562<br>Iteration: 17, c = 1.841423034667969<br>Iteration: 18, c = 1.841411590576172<br>Iteration: 19, c = 1.841405868530273<br>Iteration: 20, c = 1.841403007507324                                                                                                                                                                                                                                                                                                                                           | Iteration: | 15, | с | = | 1.841400146484375  |
| Iteration: 17, c = 1.841423034667969<br>Iteration: 18, c = 1.841411590576172<br>Iteration: 19, c = 1.841405868530273<br>Iteration: 20, c = 1.841403007507324                                                                                                                                                                                                                                                                                                                                                                                   | Iteration: | 16, | с | = | 1.841445922851562  |
| Iteration: 18, c = 1.841411590576172<br>Iteration: 19, c = 1.841405868530273<br>Iteration: 20, c = 1.841403007507324                                                                                                                                                                                                                                                                                                                                                                                                                           | Iteration: | 17, | с | = | 1.841423034667969  |
| Iteration: 19, c = 1.841405868530273<br>Iteration: 20, c = 1.841403007507324                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Iteration: | 18, | с | = | 1.841411590576172  |
| Iteration: 20, c = 1.841403007507324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Iteration: | 19, | с | = | 1.841405868530273  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Iteration: | 20, | с | = | 1.841403007507324  |
| •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |     |   |   |                    |

#### Iteration: 35, c = 1.841405660466990

#### False position method:

| Iteration: | 1, x =  | 1.463566653481105 |
|------------|---------|-------------------|
| Iteration: | 2, x =  | 1.809481253839539 |
| Iteration: | 3, x =  | 1.839095511827520 |
| Iteration: | 4, x =  | 1.841240588240115 |
| Iteration: | 5, x =  | 1.841393875903701 |
| Iteration: | 6, x =  | 1.841404819191791 |
| Iteration: | 7, x =  | 1.841405600384506 |
| Iteration: | 8, x =  | 1.841405656150106 |
| Iteration: | 9, x =  | 1.841405660130943 |
| Iteration: | 10, x = | 1.841405660415115 |
| Iteration: | 11, x = | 1.841405660435401 |

## False position vs bisection: not always clear who wins

 $x^3 - x - 1 = 0$ 

#### **Bisection method:**

| Iteration: | 1, c =  | 1.500000000000000 |
|------------|---------|-------------------|
| Iteration: | 2, c =  | 0.750000000000000 |
| Iteration: | 3, c =  | 1.125000000000000 |
| Iteration: | 4, c =  | 1.312500000000000 |
| Iteration: | 5, c =  | 1.406250000000000 |
| Iteration: | 6, c =  | 1.359375000000000 |
| Iteration: | 7, c =  | 1.335937500000000 |
| Iteration: | 8, c =  | 1.324218750000000 |
| Iteration: | 9, c =  | 1.330078125000000 |
| Iteration: | 10, c = | 1.327148437500000 |
| Iteration: | 11, c = | 1.325683593750000 |
| Iteration: | 12, c = | 1.324951171875000 |
| Iteration: | 13, c = | 1.324584960937500 |
| Iteration: | 14, c = | 1.324768066406250 |
| Iteration: | 15, c = | 1.324676513671875 |
| Iteration: | 16, c = | 1.324722290039062 |
| Iteration: | 17, c = | 1.324699401855469 |
| Iteration: | 18, c = | 1.324710845947266 |
| Iteration: | 19, c = | 1.324716567993164 |
| Iteration: | 20, c = | 1.324719429016113 |
|            |         |                   |
| Iteration: | 35, c = | 1.324717957206303 |

#### False position method:

| Iteration: | 1, x =  | 0.125000000000000 |
|------------|---------|-------------------|
| Iteration: | 2, x =  | 0.258845437616387 |
| Iteration: | 3, x =  | 0.399230727605107 |
| Iteration: | 4, x =  | 0.541967526475374 |
| Iteration: | 5, x =  | 0.681365453934702 |
| Iteration: | 6, x =  | 0.811265467641601 |
| Iteration: | 7, x =  | 0.926423756077868 |
| Iteration: | 8, x =  | 1.023635980751716 |
| Iteration: | 9, x =  | 1.102112700940041 |
| Iteration: | 10, x = | 1.163084623011103 |
| Iteration: | 11, x = | 1.209004461867383 |
| Iteration: | 12, x = | 1.242759715838447 |
| Iteration: | 13, x = | 1.267123755869329 |
| Iteration: | 14, x = | 1.284474915416815 |
| Iteration: | 15, x = | 1.296712725379603 |
| Iteration: | 16, x = | 1.305284823099690 |
| Iteration: | 17, x = | 1.311260149895704 |
| Iteration: | 18, x = | 1.315411216706803 |
| Iteration: | 19, x = | 1.318288144277179 |
| Iteration: | 20, x = | 1.320278742279728 |
|            |         |                   |
| Iteration: | 66, X = | 1.324717957079699 |

# False position vs bisection: not always clear who wins

$$x^3 - x - 1 = 0$$

#### **Bisection method:**



More advanced methods combine the two and add other refinements\*

• Ridders' method

final project idea(?)

False position method:

• Brent method

see chapters 9.2, 9.3 of Numerical Recipes Third Edition by W.H. Press et al.

**Secant method:** same as false position, except the interval *need not bracket the root* Always uses the last two points, no branching (if-statement) involved in the procedure



Typically, "superlinear" convergence occurs when the algorithm is effective. However, it can still be slower than bisection or may not converge at all (e.g., the secant method may be parallel to the x-axis).

| def                                                                       | <pre>secant_method(</pre>                                                                                                                                 |                                                   |  |  |  |  |  |                      |
|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--|--|--|--|--|----------------------|
|                                                                           | f,                                                                                                                                                        | # The function whose root we are trying to find   |  |  |  |  |  |                      |
|                                                                           | a,                                                                                                                                                        | # The Left boundary                               |  |  |  |  |  |                      |
|                                                                           | b,                                                                                                                                                        | # The right boundary                              |  |  |  |  |  |                      |
|                                                                           | tolerance = 1.e-10,                                                                                                                                       | # The desired accuracy of the solution            |  |  |  |  |  |                      |
|                                                                           | max_iterations = $100$                                                                                                                                    | = 100 # Maximum number of iterations              |  |  |  |  |  |                      |
|                                                                           | ):                                                                                                                                                        |                                                   |  |  |  |  |  |                      |
|                                                                           | fa = f(a)                                                                                                                                                 | # The value of the function at the left boundary  |  |  |  |  |  |                      |
|                                                                           | fb = f(b)                                                                                                                                                 | # The value of the function at the right boundary |  |  |  |  |  |                      |
|                                                                           |                                                                                                                                                           |                                                   |  |  |  |  |  |                      |
|                                                                           | xprev = xnew = a                                                                                                                                          | # Estimate of the solution from the previous step |  |  |  |  |  |                      |
|                                                                           | erations):<br>tions += 1<br>b - a) / (fb - fa) # Take the point where straight line between a and b crosses y = 0<br># Calculate the function at midpoint |                                                   |  |  |  |  |  |                      |
|                                                                           | b = a                                                                                                                                                     |                                                   |  |  |  |  |  |                      |
|                                                                           | fb = fa                                                                                                                                                   |                                                   |  |  |  |  |  |                      |
|                                                                           | a = xnew                                                                                                                                                  |                                                   |  |  |  |  |  |                      |
| <pre>fa = fnew if (abs(xnew-xprev) &lt; tolerance):     return xnew</pre> |                                                                                                                                                           |                                                   |  |  |  |  |  |                      |
|                                                                           |                                                                                                                                                           |                                                   |  |  |  |  |  | print("Secant method |

print("The error estimate is ", abs(xnew - xprev))

return xnew

Solving the equation  $x + e^{-x} - 2 = 0$  on an interval ( 0.0 , 3.0 ) using the secant method The solution is x = 1.8414056604369606 obtained after 7 iterations

$$x + e^{-x} - 2 = 0$$



**Error:**  $\varepsilon_{n+1} \approx C \varepsilon_n^{1+\alpha}$  (superlinear)

$$x+e^{-x}-2=0$$



 $x^3 - x - 1 = 0$ 

| Iteration: | 1, x =  | 0.1250000000000000  | Iteration: | 17, x = | -1.058303471905222 |
|------------|---------|---------------------|------------|---------|--------------------|
| Iteration: | 2, x =  | -1.015873015873016  | Iteration: | 18, x = | -0.643978481189561 |
| Iteration: | 3, x =  | -14.026092564115256 | Iteration: | 19, x = | -0.131674045244213 |
| Iteration: | 4, x =  | -1.010979901305751  | Iteration: | 20, x = | -1.933586024088406 |
| Iteration: | 5, x =  | -1.006133240911884  | Iteration: | 21, x = | 0.157497929951306  |
| Iteration: | 6, x =  | -0.512666258317272  | Iteration: | 22, x = | 0.626623389695762  |
| Iteration: | 7, x =  | 0.273834681149844   | Iteration: | 23, x = | -2.226715128003442 |
| Iteration: | 8, x =  | -1.287767830907429  | Iteration: | 24, x = | 1.093727500240917  |
| Iteration: | 9, x =  | 3.565966235528240   | Iteration: | 25, x = | 1.382563036703896  |
| Iteration: | 10, x = | -1.077368321415013  | Iteration: | 26, x = | 1.310687668369503  |
| Iteration: | 11, x = | -0.947522156044583  | Iteration: | 27, x = | 1.323983763313963  |
| Iteration: | 12, x = | -0.513174359589628  | Iteration: | 28, x = | 1.324727653842468  |
| Iteration: | 13, x = | 0.447558454314033   | Iteration: | 29, x = | 1.324717950607204  |
| Iteration: | 14, x = | -1.325124217388110  | Iteration: | 30, x = | 1.324717957244686  |
| Iteration: | 15, x = | 4.186373891812861   | Iteration: | 31, x = | 1.324717957244746  |
| Iteration: | 16, x = | -1.167930924631363  |            |         |                    |
|            |         |                     |            |         |                    |



The secant method is not assured to converge since it does not bracket the root. In this particular example, it eventually succeeded after initially diverging.

## Secant method: Choice of interval

 $x^3 - x - 1 = 0$ Choose the initial interval as (1,3) instead of (0,3)



If possible, select the initial interval as close as possible to the root

#### Newton-Raphson method:

- Local method (uses only the current estimate to get the next one)
- Requires the evaluation of the derivative (tangent)
  - Not always available or easy to compute

**Idea:** Assume that a given point x is close to the root  $x^* [f(x^*) = 0]$ 

Then (Taylor theorem)

$$f(x^*) \approx f(x) + f'(x)(x^* - x)$$

and since  $f(x^*) = 0$  we have

$$x^* \approx x - \frac{f(x)}{f'(x)}$$

**Iterative procedure:** 

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

starting from an initial guess  $x_0$ 

## **Newton-Raphson method**

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$



"Quadratic" convergence when works **Error**:  $\varepsilon_{n+1} \approx C \varepsilon_n^2$  (quadratic) However, when we are close to f' = 0, we have a problem

## **Newton-Raphson method**

| def | newton_method(<br>f,<br>df                                       | <pre># The function whose # The derivative of</pre>                    | root we are trying to find<br>the function                              |  |  |  |  |  |  |
|-----|------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------|--|--|--|--|--|--|
|     | x0,<br>tolerance = 1.e-10,                                       | <pre># The initial guess # The desired accura</pre>                    | cy of the solution                                                      |  |  |  |  |  |  |
|     | <pre>max_iterations = 100 ):</pre>                               | # Maximum number of                                                    | iterations                                                              |  |  |  |  |  |  |
|     | $x prev = x new = x \theta$                                      |                                                                        |                                                                         |  |  |  |  |  |  |
|     | <pre>global last_newton_it last_newton_iteration diff = 0.</pre> | <pre>last_newton_iterations ewton_iterations = 0 0.</pre>              |                                                                         |  |  |  |  |  |  |
|     | <pre>for i in range(max_it     last_newton_itera</pre>           | <pre>i in range(max_iterations):     last_newton_iterations += 1</pre> |                                                                         |  |  |  |  |  |  |
|     | xprev = xnew                                                     |                                                                        |                                                                         |  |  |  |  |  |  |
|     | <pre>fval = f(xprev) dfval = df(xprev)</pre>                     |                                                                        | # The current function value<br># The current function derivative value |  |  |  |  |  |  |
|     |                                                                  | -1 ( -16]                                                              | " The most it and it and                                                |  |  |  |  |  |  |
|     | $xnew = xprev - +v_{i}$                                          | al / dtval                                                             | # The next iteration                                                    |  |  |  |  |  |  |
|     | <pre>if (abs(xnew-xpre<br/>return xnew</pre>                     | v) < tolerance):                                                       |                                                                         |  |  |  |  |  |  |
|     |                                                                  |                                                                        |                                                                         |  |  |  |  |  |  |

 $x + e^{-x} - 2 = 0$ 



print("Newton-Raphson method failed to converge to a required precision in " + str(max\_iterations) + " iterations")
print("The error estimate is ", abs(xnew-xprev))

return xnew

Solving the equation  $x + e^{-x} - 2 = 0$  with an initial guess of x0 = 0.5The solution is x = 1.8414056604369606 obtained after 6 iterations

## **Newton-Raphson method**

$$x+e^{-x}-2=0$$



### **Newton-Raphson method: issues**

$$x^3 - x - 1 = 0$$



Similar issue as with the secant method; the reason: f' = 0 at x = 0.577...

## Newton-Raphson method: issues

Try finding the root of  $f(x) = x^3 - 2x + 2$  with an initial guess of  $x_0 = 0$ 



The main issue is, again, we have points with f' = 0 in the neighborhood

## **Relaxation method**

• Cast the equation f(x) = 0 in a form

$$x = \varphi(x)$$

- For example  $\varphi(x) = f(x) + x$  but this choice is not unique
- The root is approximated by an iterative procedure

$$x_{n+1} = \varphi(x_n)$$

**Convergence criterion:** 

 $|\varphi'(x_n)| < 1$ , for all  $x_n$ 

## **Relaxation method**

```
def relaxation_method(
                          # The function from the equation x = phi(x)
    phi,
                         # The initial guess
   x0,
   tolerance = 1.e-10, # The desired accuracy of the solution
   max iterations = 100 # Maximum number of iterations
   ):
   x prev = x new = x0
    global last_relaxation_iterations
   last_relaxation_iterations = 0
   for i in range(max iterations):
        last relaxation iterations += 1
        xprev = xnew
       xnew = phi(xprev) # The next iteration
        if (abs(xnew-xprev) < tolerance):</pre>
            return xnew
```

print("The relaxation method failed to converge to a required precision in " + str(max\_iterations) + " iterations")
print("The error estimate is ", abs(xnew - xprev))

return xnew

$$x + e^{-x} - 2 = 0$$
 as  $x = 2 - e^{-x}$  i.e.  $\phi(x) = 2 - e^{-x}$ 

#### Starting with $x_0 = 0.5$ we have

| Solving the $\epsilon$ | equati | Lor | n x = | = 2 - e^-x with relaxation method an initial guess of x0 = | 0.5 |
|------------------------|--------|-----|-------|------------------------------------------------------------|-----|
| Iteration:             | 0,     | Х   | =     | 0.50000000000000, phi(x) = 1.393469340287367               |     |
| Iteration:             | 1,     | Х   | =     | 1.393469340287367, phi(x) = 1.751787325113973              |     |
| Iteration:             | 2,     | Х   | =     | 1.751787325113973, phi(x) = 1.826536369684999              |     |
| Iteration:             | 3,     | х   | =     | 1.826536369684999, phi(x) = 1.839029855597129              |     |
| Iteration:             | 4,     | х   | =     | 1.839029855597129, phi(x) = 1.841028423293983              |     |
| Iteration:             | 5,     | х   | =     | 1.841028423293983, phi(x) = 1.841345821475382              |     |
| Iteration:             | 6,     | х   | =     | 1.841345821475382, phi(x) = 1.841396170032424              |     |
| Iteration:             | 7,     | х   | =     | 1.841396170032424, phi(x) = 1.841404155305379              |     |
| Iteration:             | 8,     | х   | =     | 1.841404155305379, phi(x) = 1.841405421731432              |     |
| Iteration:             | 9,     | х   | =     | 1.841405421731432, phi(x) = 1.841405622579610              |     |
| Iteration:             | 10,    | х   | =     | 1.841405622579610, phi(x) = 1.841405654432999              |     |
| Iteration:             | 11,    | х   | =     | 1.841405654432999, phi(x) = 1.841405659484766              |     |
| Iteration:             | 12,    | х   | =     | 1.841405659484766, phi(x) = 1.841405660285948              |     |
| Iteration:             | 13,    | Х   | =     | 1.841405660285948, phi(x) = 1.841405660413011              |     |
| Iteration:             | 14,    | х   | =     | 1.841405660413011, phi(x) = 1.841405660433162              |     |
| Iteration:             | 15,    | х   | =     | 1.841405660433162, phi(x) = 1.841405660436358              |     |
| The solution           | is x   | =   | 1.8   | 8414056604331623 obtained after 15 iterations              |     |

Not as fast as Newton-Raphson but does not require evaluation of the derivative

$$x^3 - x - 1 = 0$$
 as  $x = x^3 - 1$  i.e.  $\varphi(x) = x^3 - 1$ 

#### Starting with $x_0=0$ we have

Solving the equation  $x = x^3 - 1$  with relaxation method an initial guess of  $x^0 = 0.0$ Iteration: Iteration: Iteration: Iteration: Iteration: Iteration: 6, x = -58871587162270591457689600.000000000000000, phi(x) = -20404090132275264698947825968051310952675782605Iteration: 6202557355691431285390611316736.000000000000000 7, x = -204040901322752646989478259680513109526757826056202557355691431285390611316736.000000000000000, phiIteration: (x) = -849477147223738769124261153859947219933304503407088864329587058315002861225858314510130211954336728493261609772281413

1127104275290993706669943943557518825041720139256751756296514363510463501782805696167407096791414943273033163341824.0000000 0000000

#### Divergent!

Reason:  $|\varphi'(x_n)| < 1$  violated [try to come up with a better choice of  $\varphi(x)$ ?]

# **Summary**







# **Summary**

#### **Bracketing methods**

#### **Bisection method:**

- Guaranteed to converge with a fixed rate
- Need to bracket the root

#### Local method

#### Secant method:

- Typically faster than bisection/false position
- May not always converge
- Does not need derivative

#### **Relaxation method:**

- Simple to implement
- Does not require derivative
- Often does not converge

#### False position method:

- Guaranteed to converge
- Can be faster than bisection but not always
- Need to bracket the root

#### Newton-Raphson method:

- Very fast when converges
- Can be sensitive to initial guess
- May not converge if f'(x) = 0
- Requires evaluation of the derivative at each step

| Method         | <b>Convergence</b> Rate           | <b>Requires Derivative?</b> | Guaranteed to Converge? |
|----------------|-----------------------------------|-----------------------------|-------------------------|
| Bisection      | Linear $O(1/2^n)$                 | ×                           |                         |
| False Position | Linear (but variable)             | ×                           |                         |
| Secant         | Superlinear $O(e^{-(1+\alpha)n})$ | ×                           | ×                       |
| Newton-Raphson | Quadratic $O(e^{-2n})$            |                             | ×                       |
| Relaxation     | Variable                          | ×                           | ×                       |