

Computational Physics (PHYS6350)

Lecture 13: Classical mechanics problems

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}_j}\right) - \frac{\partial L}{\partial q_j} = 0$$

Instructor: Volodymyr Vovchenko (vvovchenko@uh.edu)

Course materials: <u>https://github.com/vlvovch/PHYS6350-ComputationalPhysics</u> **Online textbook:** <u>https://vovchenko.net/computational-physics/</u>

Three-body problem

Exercise 8.10 (M. Newman, Computational Physics)

Three stars interacting through gravitational force

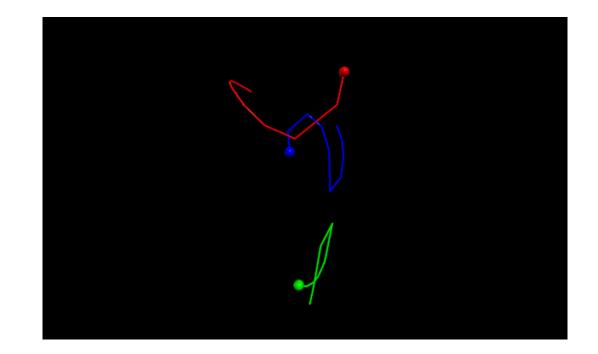
The equations of motion are

$$\frac{d^{2}\mathbf{r}_{1}}{dt} = Gm_{2}\frac{\mathbf{r}_{2} - \mathbf{r}_{1}}{|\mathbf{r}_{2} - \mathbf{r}_{1}|^{3}} + Gm_{3}\frac{\mathbf{r}_{3} - \mathbf{r}_{1}}{|\mathbf{r}_{3} - \mathbf{r}_{1}|^{3}},$$

$$\frac{d^{2}\mathbf{r}_{2}}{dt} = Gm_{1}\frac{\mathbf{r}_{1} - \mathbf{r}_{2}}{|\mathbf{r}_{1} - \mathbf{r}_{2}|^{3}} + Gm_{3}\frac{\mathbf{r}_{3} - \mathbf{r}_{2}}{|\mathbf{r}_{3} - \mathbf{r}_{2}|^{3}},$$

$$\frac{d^{2}\mathbf{r}_{3}}{dt} = Gm_{1}\frac{\mathbf{r}_{1} - \mathbf{r}_{3}}{|\mathbf{r}_{1} - \mathbf{r}_{3}|^{3}} + Gm_{2}\frac{\mathbf{r}_{2} - \mathbf{r}_{3}}{|\mathbf{r}_{2} - \mathbf{r}_{3}|^{3}}.$$
Name
Star 1
Star 2
Star 3

Name	Mass	x	у
Star 1	150.	3	1
Star 2	200.	-1	-2
Star 3	250.	-1	1



Cannot be solved analytically!

Take G = 1 (dimensionless)

Initially at rest and move in plane z = 0Initial coordinates: $\mathbf{r}_1 = (3,1)$, $\mathbf{r}_2 = (-1,-2)$, $\mathbf{r}_3 = (-1,1)$

Three-body problem

```
def fthreebody(xin, t):
    global f_evaluations
    f evaluations += 1
    x1 = xin[0]
   y1 = xin[1]
    x2 = xin[2]
    y2 = xin[3]
    x3 = xin[4]
   y3 = xin[5]
    r12 = np.sqrt((x1-x2)**2 + (y1-y2)**2)
    r13 = np.sqrt((x1-x3)**2 + (y1-y3)**2)
    r23 = np.sqrt((x2-x3)**2 + (y2-y3)**2)
    return np.array([xin[6],xin[7],xin[8],xin[9],xin[10],xin[11],
                     G * m2 * (x2 - x1) / r12^{**3} + G * m3 * (x3 - x1) / r13^{**3}
                     G * m2 * (y2 - y1) / r12**3 + G * m3 * (y3 - y1) / r13**3,
                     G * m1 * (x1 - x2) / r12**3 + G * m3 * (x3 - x2) / r23**3,
                     G * m1 * (y1 - y2) / r12**3 + G * m3 * (y3 - y2) / r23**3,
                     G * m1 * (x1 - x3) / r13**3 + G * m2 * (x2 - x3) / r23**3,
                     G * m1 * (y1 - y3) / r13**3 + G * m2 * (y2 - y3) / r23**3
                   )
```

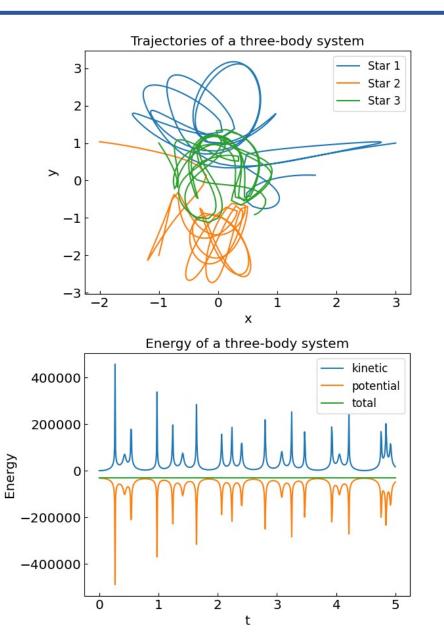
Run from t = 0 to 5

Three-body problem

def fthreebody(xin, t): global f_evaluations f evaluations += 1x1 = xin[0]y1 = xin[1] $x^{2} = xin[2]$ y2 = xin[3]x3 = xin[4]y3 = xin[5] $r12 = np.sqrt((x1-x2)^{**2} + (y1-y2)^{**2})$ $r13 = np.sqrt((x1-x3)^{**2} + (y1-y3)^{**2})$ r23 = np.sqrt((x2-x3)**2 + (y2-y3)**2)return np.array([xin[6],xin[7],xin[8],xin[9],xin[10],xin[11], $G * m2 * (x2 - x1) / r12^{**3} + G * m3 * (x3 - x1) / r13^{**3}$ G * m2 * (y2 - y1) / r12**3 + G * m3 * (y3 - y1) / r13**3, G * m1 * (x1 - x2) / r12**3 + G * m3 * (x3 - x2) / r23**3, G * m1 * (y1 - y2) / r12**3 + G * m3 * (y3 - y2) / r23**3, G * m1 * (x1 - x3) / r13**3 + G * m2 * (x2 - x3) / r23**3,G * m1 * (y1 - y3) / r13**3 + G * m2 * (y2 - y3) / r23**3

Run from t = 0 to 5

final project idea(?): simulate the solar system



In Lagrangian mechanics, a classical system with N degrees of freedom is characterized by generalized coordinates q_i that obey Euler-Lagrange equations of motion:

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}_j}\right) - \frac{\partial L}{\partial q_j} = 0, \qquad j = 1 \dots N$$

L is the non-relativistic Lagrangian which is typically defined as the difference of kinetic and potential energies, L = T - V.

One can rewrite these equations using the chain rule:

$$\sum_{i=1}^{N} \frac{\partial^2 L}{\partial \dot{q}_j \,\partial \dot{q}_i} \ddot{q}_i = -\sum_{i=1}^{N} \frac{\partial^2 L}{\partial \dot{q}_j \,\partial q_i} \dot{q}_i - \frac{\partial^2 L}{\partial \dot{q}_j \,\partial t} + \frac{\partial L}{\partial q_j}, \qquad j = 1 \dots N.$$

This is a system of N linear equations for \ddot{q}_i . When solved we have

 $\ddot{q}_i = f_i(\{q_j\}, \{\dot{q}_j\}, t).$

or

$$\begin{aligned} \frac{dq_i}{dt} &= \dot{q}_i, \\ \frac{d\dot{q}_i}{dt} &= f_i(\{q_j\}, \{\dot{q}_j\}, t), \end{aligned}$$

which can be solved using standard methods.

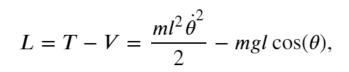
Non-linear pendulum

The generalized coordinate is the displacement angle heta

 $x = l\sin(\theta),$

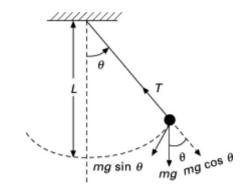
 $y = -l\cos(\theta),$

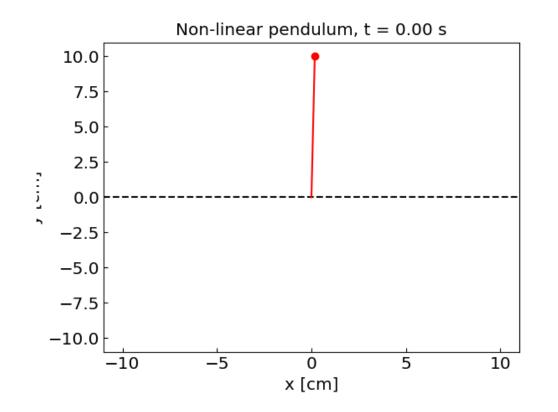
Lagrangian



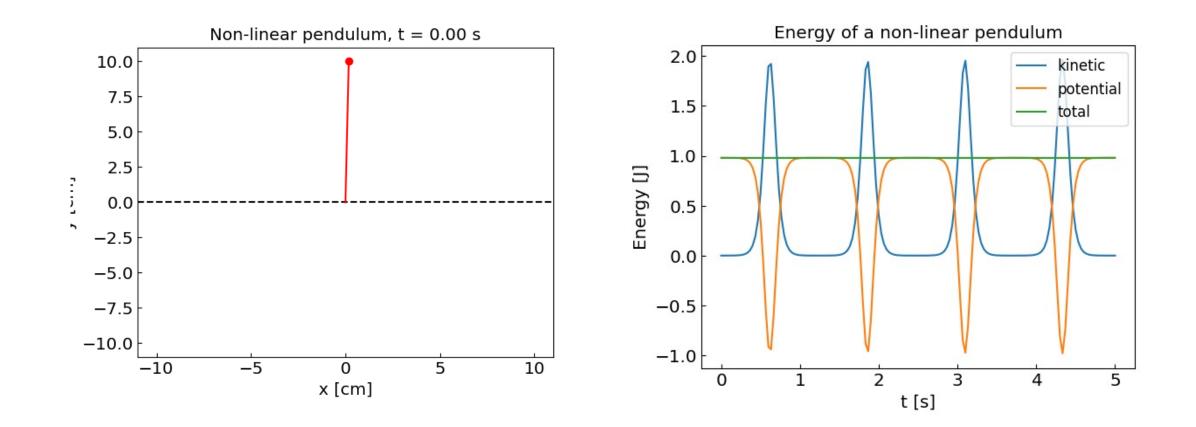
Equations of motion

 $ml\ddot{\theta} = -mgl\sin\theta.$





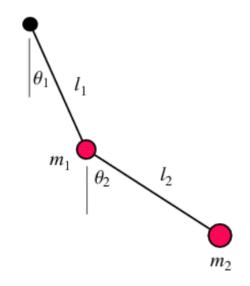
Non-linear pendulum



Double pendulum is the simplest system exhibiting chaotic motion – *deterministic chaos*

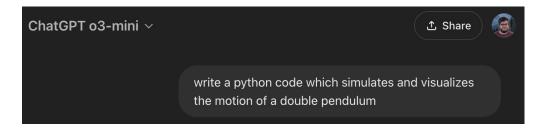
Two degrees of freedom: the displacement angles θ_1 and θ_2

 $\begin{aligned} x_1 &= l_1 \sin(\theta_1), \\ y_1 &= -l_1 \cos(\theta_1), \\ x_2 &= l_1 \sin(\theta_1) + l_2 \sin(\theta_2), \\ y_2 &= -l_1 \cos(\theta_1) - l_2 \cos(\theta_2). \end{aligned}$

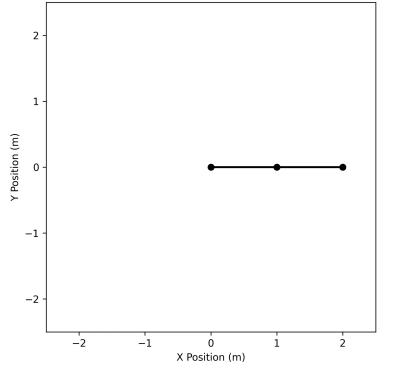


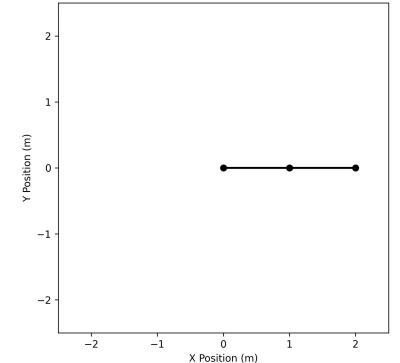
Double pendulum vs ChatGPT

First approach nowadays: try LLM



Double Pendulum Simulation





Please double check your equation. The motion seems off

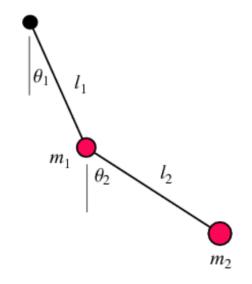
Thought about double pendulum equations for 12 seconds $\, \smallsetminus \,$

Double Pendulum Simulation

Double pendulum is the simplest system exhibiting chaotic motion – *deterministic chaos*

Two degrees of freedom: the displacement angles θ_1 and θ_2

 $\begin{aligned} x_1 &= l_1 \sin(\theta_1), \\ y_1 &= -l_1 \cos(\theta_1), \\ x_2 &= l_1 \sin(\theta_1) + l_2 \sin(\theta_2), \\ y_2 &= -l_1 \cos(\theta_1) - l_2 \cos(\theta_2). \end{aligned}$



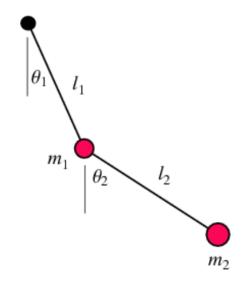
$$T = \frac{m_1 \dot{x}_1^2}{2} + \frac{m_2 \dot{x}_2^2}{2} = \frac{1}{2} m_1 l_1^2 \dot{\theta}_1 + \frac{1}{2} m_2 \left[l_1^2 \dot{\theta}_1^2 + l_2^2 \dot{\theta}_2^2 + 2l_1 l_2 \dot{\theta}_1 \dot{\theta}_2 \cos(\theta_1 - \theta_2), \right] \quad \text{kinetic energy}$$

$$V = m_1 g y_1 + m_2 g y_2 = -(m_1 + m_2) g l_1 \cos(\theta_1) - m_2 g l_2 \cos(\theta_2). \quad \text{potential energy}$$

Double pendulum is the simplest system exhibiting chaotic motion – *deterministic chaos*

Two degrees of freedom: the displacement angles θ_1 and θ_2

 $\begin{aligned} x_1 &= l_1 \sin(\theta_1), \\ y_1 &= -l_1 \cos(\theta_1), \\ x_2 &= l_1 \sin(\theta_1) + l_2 \sin(\theta_2), \\ y_2 &= -l_1 \cos(\theta_1) - l_2 \cos(\theta_2). \end{aligned}$



$$T = \frac{m_1 \dot{x}_1^2}{2} + \frac{m_2 \dot{x}_2^2}{2} = \frac{1}{2} m_1 l_1^2 \dot{\theta}_1 + \frac{1}{2} m_2 \left[l_1^2 \dot{\theta}_1^2 + l_2^2 \dot{\theta}_2^2 + 2l_1 l_2 \dot{\theta}_1 \dot{\theta}_2 \cos(\theta_1 - \theta_2), \right]$$
 kinetic energy

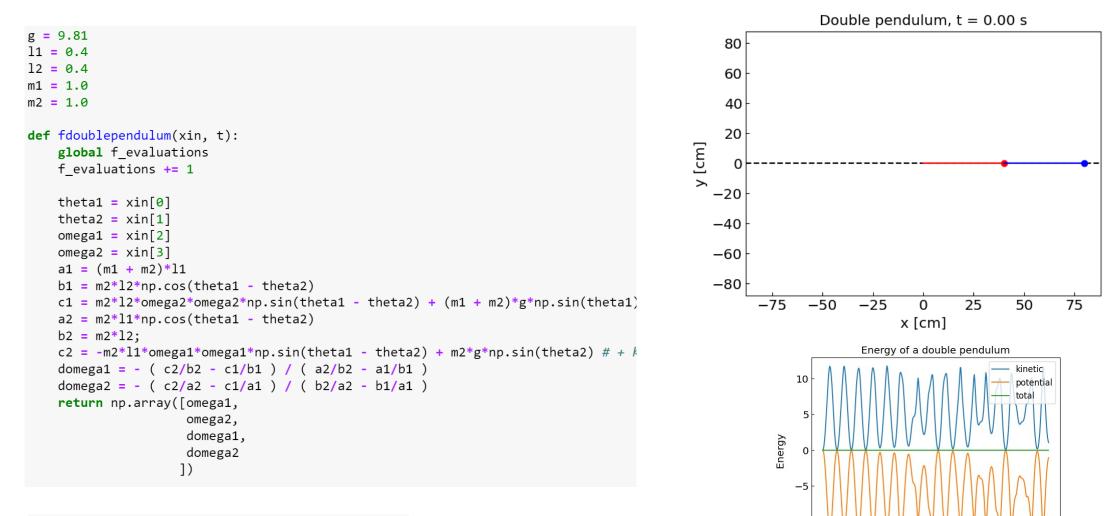
$$V = m_1 g y_1 + m_2 g y_2 = -(m_1 + m_2) g l_1 \cos(\theta_1) - m_2 g l_2 \cos(\theta_2).$$
 potential energy

The Lagrange equations of motion read

$$(m_1 + m_2)l_1\ddot{\theta}_1 + m_2l_2\cos(\theta_1 - \theta_2)\ddot{\theta}_2 = -m_2l_1\dot{\theta}_2^2\sin(\theta_1 - \theta_2) - (m_1 + m_2)g\sin(\theta_1),$$

 $m_2l_1\cos(\theta_1 - \theta_2)\ddot{\theta}_1 + m_2l_2\ddot{\theta}_2 = m_2l_1\dot{\theta}_1^2\sin(\theta_1 - \theta_2) - m_2g\sin(\theta_2).$

This is a system of two linear equations for $\ddot{\theta}_{1,2}$ that can be solved straightforwardly.



-10

0.0

2.5

5.0

7.5 t [s] 10.0

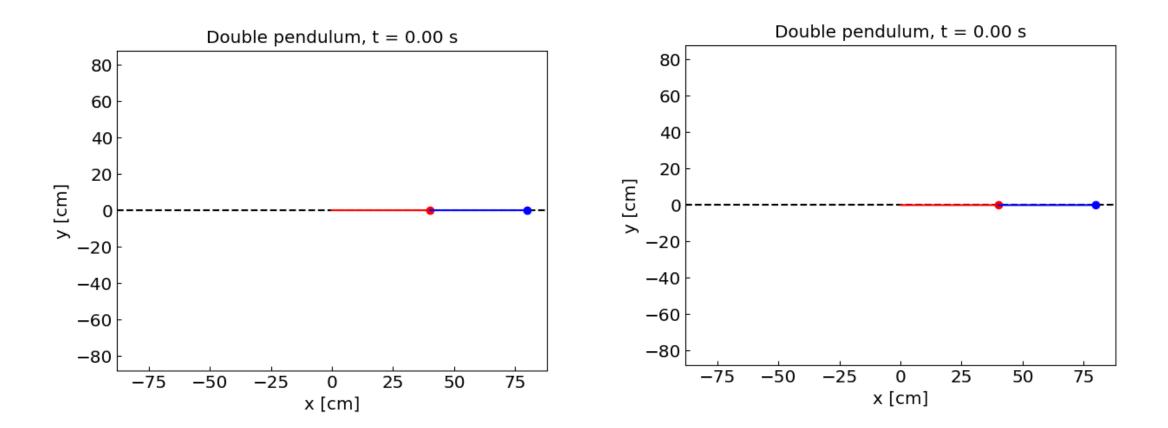
12.5

15.0

Double pendulum: chaotic behavior

$$\theta_1^0 = \theta_2^0 = \pi/2$$

 $\theta_1^0 = \theta_2^0 = \pi/2 + 10^{-4}$



Double pendulum: chaotic behavior

$$\theta_1^0 = \theta_2^0 = \pi/2$$

 $\theta_1^0 = \theta_2^0 = \pi/2 + 10^{-4}$

