
Computational Physics (PHYS6350)
Lecture 9: Numerical Integration: Part 2

• High-order quadrature
• Gaussian quadrature

Instructor: Volodymyr Vovchenko (vvovchenko@uh.edu)
Course materials: https://github.com/vlvovch/PHYS6350-ComputationalPhysics
Online textbook: https://vovchenko.net/computational-physics/
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Numerical integration so far

• Rectangle rule

• Trapezoidal rule

• Simpson’s rule

All can be written as



Integrating the interpolating polynomial

There is a systematic way to derive a numerical integration scheme

which will give an exact result when f(x) is a polynomial up to a certain degree.

Recall the interpolating polynomial through N+1 points where f(x) can be evaluated

Then, the integral reads

where

This expression is exact when f(x) is a polynomial up to degree N

Lagrange basis functions



Newton-Cotes quadratures

with xk distributed equidistantly

• Closed Newton-Cotes (include the endpoints)

• Open Newton-Cotes (exclude the endpoints) 

N = 1: trapezoidal
N = 2: Simpson

N = 0: rectangle rule



Newton-Cotes quadratures

The weights can be computed just once using one of the earlier methods (e.g. Romberg)



Newton-Cotes quadratures: example

Exact result (to machine precision) from N = 4



Newton-Cotes quadratures: Runge phenomenon

Recall the Runge function:



Newton-Cotes quadratures: Runge phenomenon

Romberg method



Newton-Cotes quadratures: oscillating weights

For large N one has highly oscillatory weights
• Manifestation of the Runge phenomenon
• Another issue: round-off error due to large cancellations



Clenshaw-Curtis quadrature

Chebyshev nodes minimize the Runge phenomenon

The corresponding quadrature is called Clenshaw-Curtis

Weights*:

*For efficient calculation use discrete cosine transform



Clenshaw-Curtis quadrature



Gaussian quadrature

We have seen that an n-point quadrature

gives the exact result when f(x) is a polynomial of degree up to n-1. 

It turns out this can be exploited to obtain a quadrature that is 
exact when f(x) is a polynomial up to degree 2n-1.

The corresponding quadrature is called Gaussian quadrature

This is true any choice of distinct nodes xk.

We have the freedom to choose the locations of nodes xk,
which gives us additional n degrees of freedom.



Gauss-Legendre quadrature

Let us focus on the interval (-1,1). It can always be mapped to (a,b) by a transformation

Gauss-Legendre quadrature:

where xk are the roots of the Legendre polynomial 𝑃!(𝑥)

and the weights are given by



Gauss-Legendre quadrature

How to find the nodes xk and weights wk?

For the Gauss-Legendre quadrature a more efficient procedure exists 
(see e.g. http://www-personal.umich.edu/~mejn/cp/programs/gaussxw.py)

In general, we can use PolyRoots to find xk and e.g. Romberg method for wk

http://www-personal.umich.edu/~mejn/cp/programs/gaussxw.py


Gauss-Legendre quadrature: polynomials



Generalized Gaussian quadratures

The method of Gaussian quadratures can be generalized to integrals of the following type

In this case it is possible to construct an n-point quadrature that provides the exact answer 
when f(x) is a polynomial of degree up to 2n - 1. The weights wk are given by

For a = -1, b = 1, 𝜔 𝑥 = 1 we have Gauss-Legendre quadrature

For a = -1, b = 1, 𝜔 𝑥 = 1 − 𝑥 ! 1 + 𝑥 " we have Gauss-Jacobi quadrature

and the nodes xk are the roots of a polynomial 𝑝#(𝑥) satisfying

𝜔(𝑥) – weight function



Generalized Gaussian quadratures

The interval (a,b) does not have to be finite

• Gauss-Laguerre quadrature

Example: Fermi-Dirac/Bose-Einstein integrals in relativistic systems

• Gauss-Hermite quadrature

Example: Expectation value of a function of a normally distributed random variable

xk are the roots of Laguerre polynomial 𝐿#(𝑥)

xk are the roots of Hermite polynomial 𝐻#(𝑥)

Another approach: map (semi-)infinite interval to (-1,1) and use the Gauss-Legendre quadrature



Summary: Choosing the integration method

• Rectangle/trapezoidal rule
• Good for quick calculations not requiring great accuracy
• Does not rely on the integrand being smooth; a good choice for 

noisy/singular integrands, equally spaced points

• Romberg method
• Control over error
• Good for relatively smooth functions evaluated at equidistant nodes

• Gaussian quadrature
• Theoretically most accurate if the function is relatively smooth
• Good for many repeated calculations of the same type of integral
• Requires unequally spaced nodes
• Error can be challenging to control, especially for non-smooth functions

• Gauss-Kronrod quadrature gives control over error
• Bad for discontinuous integrands final project idea(?)


