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• System of N particles with a pair potential

• Newton’s equations of motion (classical N-body problem)

• Planetary motion
• Solar system simulation

• Statistical mechanics properties and the equation of state
• Finite simulation box with periodic boundary conditions

Molecular dynamics (MD)



Have to solve Newton’s equations of motion

• Desired properties
• Stability (long simulations)
• Energy conservation
• Time-reversibility

• Rewrite as a system of first-order ODEs

Molecular dynamics equations

and use the leapfrog method



We have system of equations

The leapfrog scheme applied to this system of equations:

Velocity Verlet method

• Coordinates are evaluated at full steps
• Velocities are evaluated at half-steps
Leapfrog method applied to molecular dynamics proble is called Velocity Verlet method.

Velocity Verlet:



• Statistical mechanics: system with large number of particles

• Microscopically: Newton’s equations of motion

• Perform box simulation to emulate infinite system
• Periodic boundary conditions (create images of the system)
• Minimum-image convention (consider only closest image for all pairs)

• If N is large enough, system can be characterized by macroscopic parameters
• Energy-Volume-Number (UVN): microcanonical ensemble describing closed system with fixed energy
• Temperature-Volume-Number (TVN): canonical ensemble where the system is coupled to a thermostat to maintain 

constant temperature

• MD simulations give access to the equation of state

Box simulation and statistical mechanics



Velocity Verlet method for box simulation



Forces

We will assume all masses are equal to unity, mi = 1 (dimensionless) and that the 
pair potential depends on the distance only. Then



!𝑉!" = 𝑉!"/𝜀

Example: Lennard-Jones fluid
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Reduced variables:

𝑟̃ = 𝑟/𝜎 !𝑇 = 𝑇/(𝑘#𝜀)

Properties:

• Multiple phase transitions, including critical point
• Cannot be solved analytically
• Tractable with molecular dynamics simulations

-𝑛 = 𝑛𝜎$

S. Stephan, M. Thol, J. Vrabec, H. Hasse, Journal of Chemical Information and Modeling 59, 4248 (2019)



Example: Lennard-Jones fluid
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Both the potential and the gradient term can be expressed in terms of |ri-rj|2, 
saves the unnecessary computation of the square root



Simulation: Initial conditions

We have to initialize the system with initial positions and velocities 

• Coordinates
• Put particles in a grid
• Avoids particle overlap (mind the 𝑟!"# term)

• Velocities
• Sample each component from Gaussian 

(Maxwell-Boltzmann) distribution



Simulation

T = 1, 𝜌 = 0.1, N = 64

Kinetic temperature drifts away from initial value!
Reason: system takes time to equilibrate, and temperature is not conserved in 
microcanonical ensemble



Simulation: Keep the temperature fixed

T = 1, 𝜌 = 0.1, N = 64

Keep the temperature fixed during the equilibration phase by periodically rescaling 
the velocities to have desired temperature

More involved approaches: thermostat degrees of freedom (Berendsen, Nose-Hoover, …)
final project idea(?)



Lennard-Jones fluid: C++/GPU implementation

Implementation:
Velocity Verlet integration scheme implemented on CUDA-GPU (x100-200 speed-up*)

open source: https://github.com/vlvovch/lennard-jones-cuda

https://github.com/vlvovch/lennard-jones-cuda

