b ]

Computational Physics (PHYS6350)

Lecture 14: Classical molecular dynamics
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Instructor: Volodymyr Vovchenko (vvovchenko@uh.edu)

Course materials: https://github.com/vlvovch/PHYS6350-ComputationalPhysics
Online textbook: https://vovchenko.net/computational-physics/
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Molecular dynamics (MD)

* System of N particles with a pair potential

* Newton's equations of motion (classical N-body problem)
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e Planetary motion

*  Solar system simulation

» Statistical mechanics properties and the equation of state

*  Finite simulation box with periodic boundary conditions




Molecular dynamics equations

Have to solve Newton's equations of motion
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e Desired properties
Stability (long simulations)

* Energy conservation

* Time-reversibility

* Rewrite as a system of first-order ODEs
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and use the leapfrog method



Velocity Verlet method

We have system of equations TN
dx : : . : —t
— =0, Ve " "5
= = f(x,1). t, t,, i L., t, L

The leapfrog scheme applied to this system of equations:

x(t+ h) = x(t) + ho(t + h/2),
o(t 4+ 3h/2) = v(t + hl2) + hf[x(t + h),t + h)],

* Coordinates are evaluated at full steps
* Velocities are evaluated at half-steps
Leapfrog method applied to molecular dynamics proble is called Velocity Verlet method.

Velocity Verlet: ,
v(t + h/2) = v(t) + Ef[x(t), t],

x(t+ h) = x(t) + ho(t + h/2),
o(t + h) = vt + h2) + gf[x(t + h),t + h)].



Box simulation and statistical mechanics

e Statistical mechanics: system with large number of particles

e Microscopically: Newton's equations of motion
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e Perform box simulation to emulate infinite system

*  Periodic boundary conditions (create images of the system)

*  Minimum-image convention (consider only closest image for all pairs)

* If Nis large enough, system can be characterized by macroscopic parameters

*  Energy-Volume-Number (UVN): microcanonical ensemble describing closed system with fixed energy

*  Temperature-Volume-Number (TVN): canonical ensemble where the system is coupled to a thermostat to maintain
constant temperature

e MD simulations give access to the equation of state



Velocity Verlet method for box simulation

ri=vj,
vi=—(m)™ Y ViV(r,r),

J#i

# Apply the velocity verlet time step
# Returns the tuple of new positions, velocities, accelerations (forces), potential energy and pressure
def velocity verlet(positions, velocities, accelerations,
time_step, potential, potential gradient):

# Update positions

positions += velocities*time_step + 0.5*accelerations*time_step**2

positions = positions - box_length*np.floor(positions/box_length)

# Update velocities

velocities _half = velocities + ©.5*accelerations*time_step

# Compute new forces and potential energy

accelerations, potential energy, pressure = compute_forces(accelerations, positions, potential, potential gradient)

# Update velocities using new accelerations

velocities = velocities_half + ©.5*accelerations*time_step

# Add 1ideal gas contribution to the pressure

kinetic_temperature = compute_kinetic_temperature(velocities)

pressure += density * kinetic_temperature

return positions, velocities, accelerations, potential energy, pressure



Forces

We will assume all masses are equal to unity, m; = 1 (dimensionless) and that the
pair potential depends on the distance only. Then

# Computes forces for a given vector of positions, 1interaction potential and its gradient
# Return a tuple: positions, total potential energy, and the virial part of the pressure
def compute_forces(forces, positions, potential, potential_gradient):
# forces = np.zeros_Llike(positions)
forces.fill(©.)
potential_energy = 0.0
virial = 0.0
for i in range(n_particles):
for j in range(i+l, n_particles):
# Vector of relative distance
r_ij = positions[i] - positions[j]
# Periodic boundary conditions (minimum-image convention)
r_ij = r_ij - box_length*np.round(r_ij/box_length)

np.sum(r_ij**2)
-potential_gradient(r_sq) * r_ij

r_sq
f_ij

forces[i] += f_ij

forces[j] -= f_ij

potential_energy += potential(r_sq)
virial += np.dot(f_ij, r_ij)

virial = virial/(3.0*box_length*#*3)
return forces, potential_energy, virial



Example: Lennard-Jones fluid
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Example: Lennard-Jones fluid

# Lennard-Jones potential as a function of squared distance
def 1j potential(r_sq):

ré = r_sq**3

rl2 = r6**2

return 4.0*%(1./rl12 - 1./r6)

# The grandient term dV/dr / r in the rhs of Newton's equations
# for the LJ potential
def 1j potential gradient(r_sq):

ré = r_sq**3

rl2 = r6**2

return -24.0*%(2./rl2 - 1./r6) / r_sq

Both the potential and the gradient term can be expressed in terms of |r-r|?,
saves the unnecessary computation of the square root



Simulation: Initial conditions

We have to initialize the system with initial positions and velocities

* Coordinates
def initial positions():
e Put particles in a gnd ret = np.zeros((n_particles,3))
Nsingle = np.ceil(n_particles**(1/3.))
. . . — dL = box_length / Nsingl

* Avoids particle overlap (mind the 7712 term) for 1 o ranetn, partioles):
i % Nsingle
(np.trunc(i / Nsingle)) % Nsingle
np.trunc(i / (Nsingle * Nsingle))
(ix + 0.5) * dL;
(iy + 0.5) * dL;
(iz + 0.5) * dL;

ix
iy
iz
ret[i][0]
ret[i][1]
ret[i][2]
return ret

*  Velocities

* Sample each component from Gaussian
(Maxwell-Boltzmann) distribution

positions = initial_positions()
velocities = np.random.normal(loc=0.0, scale=np.sqrt(temperature®), size=(n_particles, 3))



Simulation

Energy per particle
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Simulation: Keep the temperature fixed
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Keep the temperature fixed during the equilibration phase by periodically rescaling

the velocities to have desired temperature
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More involved approaches: thermostat degrees of freedom (Berendsen, Nose-Hoover, ...)
final project idea(?)




Lennard-Jones fluid: C4++/GPU implementation
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Velocity Verlet integration scheme implemented on CUDA-GPU (x100-200 speed-up*)
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NVIDIA.
open source: https://github.com/vivovch/lennard-jones-cuda CUDA
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