b]

Computational Physics (PHYS6350)

Lecture 14: Classical molecular dynamics

m¥, = — > Vi V(I —)
j

Instructor: Volodymyr Vovchenko (vvovchenko@uh.edu)

Course materials: https://github.com/vlvovch/PHYS6350-ComputationalPhysics
Online textbook: https://vovchenko.net/computational-physics/

mailto:vvovchenko@uh.edu
https://github.com/vlvovch/PHYS6350-ComputationalPhysics
https://vovchenko.net/computational-physics/

Molecular dynamics (MD)

* System of N particles with a pair potential

* Newton's equations of motion (classical N-body problem)

miy = = ViV(Ir —)
j

e Planetary motion

* Solar system simulation

» Statistical mechanics properties and the equation of state

* Finite simulation box with periodic boundary conditions

Molecular dynamics equations

Have to solve Newton's equations of motion

mr; = — Z ViV(r;,r;))
j#i
e Desired properties
Stability (long simulations)

* Energy conservation

* Time-reversibility

* Rewrite as a system of first-order ODEs
f,‘ = V;

Gy = —(m;)"" Z ViV(ri.rj),

JFi

and use the leapfrog method

Velocity Verlet method

We have system of equations TN
dx : : . : —t
— =0, Ve " "5
= = f(x,1). t, t,, i L., t, L

The leapfrog scheme applied to this system of equations:

x(t+ h) = x(t) + ho(t + h/2),
o(t 4+ 3h/2) = v(t + hl2) + hf[x(t + h),t + h)],

* Coordinates are evaluated at full steps
* Velocities are evaluated at half-steps
Leapfrog method applied to molecular dynamics proble is called Velocity Verlet method.

Velocity Verlet: ,
v(t + h/2) = v(t) + Ef[x(t), t],

x(t+ h) = x(t) + ho(t + h/2),
o(t + h) = vt + h2) + gf[x(t + h),t + h)].

Box simulation and statistical mechanics

e Statistical mechanics: system with large number of particles

e Microscopically: Newton's equations of motion
mit; = — > ViV (In—)
J

e Perform box simulation to emulate infinite system

* Periodic boundary conditions (create images of the system)

* Minimum-image convention (consider only closest image for all pairs)

* If Nis large enough, system can be characterized by macroscopic parameters

* Energy-Volume-Number (UVN): microcanonical ensemble describing closed system with fixed energy

* Temperature-Volume-Number (TVN): canonical ensemble where the system is coupled to a thermostat to maintain
constant temperature

e MD simulations give access to the equation of state

Velocity Verlet method for box simulation

ri=vj,
vi=—(m)™ Y ViV(r,r),

J#i

Apply the velocity verlet time step
Returns the tuple of new positions, velocities, accelerations (forces), potential energy and pressure
def velocity verlet(positions, velocities, accelerations,
time_step, potential, potential gradient):

Update positions

positions += velocities*time_step + 0.5*accelerations*time_step**2

positions = positions - box_length*np.floor(positions/box_length)

Update velocities

velocities _half = velocities + ©.5*accelerations*time_step

Compute new forces and potential energy

accelerations, potential energy, pressure = compute_forces(accelerations, positions, potential, potential gradient)

Update velocities using new accelerations

velocities = velocities_half + ©.5*accelerations*time_step

Add 1ideal gas contribution to the pressure

kinetic_temperature = compute_kinetic_temperature(velocities)

pressure += density * kinetic_temperature

return positions, velocities, accelerations, potential energy, pressure

Forces

We will assume all masses are equal to unity, m; = 1 (dimensionless) and that the
pair potential depends on the distance only. Then

Computes forces for a given vector of positions, 1interaction potential and its gradient
Return a tuple: positions, total potential energy, and the virial part of the pressure
def compute_forces(forces, positions, potential, potential_gradient):
forces = np.zeros_Llike(positions)
forces.fill(©.)
potential_energy = 0.0
virial = 0.0
for i in range(n_particles):
for j in range(i+l, n_particles):
Vector of relative distance
r_ij = positions[i] - positions[j]
Periodic boundary conditions (minimum-image convention)
r_ij = r_ij - box_length*np.round(r_ij/box_length)

np.sum(r_ij**2)
-potential_gradient(r_sq) * r_ij

r_sq
f_ij

forces[i] += f_ij

forces[j] -= f_ij

potential_energy += potential(r_sq)
virial += np.dot(f_ij, r_ij)

virial = virial/(3.0*box_length*#*3)
return forces, potential_energy, virial

Example: Lennard-Jones fluid

i) (2] !

Reduced variables:

F=r/o T =T/(kge) fi = no? 0 1, 2 3
rlioc
2.5 T T T
Properties:
20F supercritical
e Multiple phase transitions, including critical point
_ 15}
* Cannot be solved analytically P s
e Tractable with molecular dynamics simulations ~ 101/ / gas+|iquid\\\\
05}
gas + solid
0.0 ' '

00 02 04 Oi6
o
S. Stephan, M. Thol, J. Vrabec, H. Hasse, Journal of Chemical Information and Modeling 59, 4248 (2019) pre

Example: Lennard-Jones fluid

Lennard-Jones potential as a function of squared distance
def 1j potential(r_sq):

ré = r_sq**3

rl2 = r6**2

return 4.0*%(1./rl12 - 1./r6)

The grandient term dV/dr / r in the rhs of Newton's equations
for the LJ potential
def 1j potential gradient(r_sq):

ré = r_sq**3

rl2 = r6**2

return -24.0*%(2./rl2 - 1./r6) / r_sq

Both the potential and the gradient term can be expressed in terms of |r-r|?,
saves the unnecessary computation of the square root

Simulation: Initial conditions

We have to initialize the system with initial positions and velocities

* Coordinates
def initial positions():
e Put particles in a gnd ret = np.zeros((n_particles,3))
Nsingle = np.ceil(n_particles**(1/3.))
. . . — dL = box_length / Nsingl

* Avoids particle overlap (mind the 7712 term) for 1 o ranetn, partioles):
i % Nsingle
(np.trunc(i / Nsingle)) % Nsingle
np.trunc(i / (Nsingle * Nsingle))
(ix + 0.5) * dL;
(iy + 0.5) * dL;
(iz + 0.5) * dL;

ix
iy
iz
ret[i][0]
ret[i][1]
ret[i][2]
return ret

* Velocities

* Sample each component from Gaussian
(Maxwell-Boltzmann) distribution

positions = initial_positions()
velocities = np.random.normal(loc=0.0, scale=np.sqrt(temperature®), size=(n_particles, 3))

Simulation

Energy per particle

T=1p=01N=64

Y fluid, To = 1.0, p = 0.1

1.0} —— Kinetic energy

—— Potential energy

057 —— Total energy

Kinetic temperature

1.1}

1.0

Tiin = (v7)/3

U fluid, To = 1.0, p = 0.1

—— Kinetic temperature
---- Average T over last100 steps

=== Initial T

0 2 4 6 8 10
t

Kinetic temperature drifts away from initial value!

P/(oT)

b

1501
1.25¢
1.00r
0.75¢
0.50r
0.25r
0.00

—-0.25¢}

Z=p/(pT)

Y fluid, To = 1.0, p = 0.1

—— Compressibility

---- Average Z over last steps

4

Reason: system takes time to equilibrate, and temperature is not conserved in

microcanonical ensemble

6

8

10

Simulation: Keep the temperature fixed

Energy per particle

|
o
0

|
=
o

Keep the temperature fixed during the equilibration phase by periodically rescaling

the velocities to have desired temperature

T=1p=01 N=64

L fluid, To = 1.0, p = 0.1

—— Kinetic energy
—— Potential energy
—— Total energy

Kinetic temperature

1.125¢

1.100 ¢

1.075¢1

1.0501

1.025¢

1.000

0.975¢

0.950

0.925

Tkin = <V2>/3

1

L) fluid, To = 1.0, p = 0.1

—— Kinetic temperature

--- Average T over last100 steps

--- |Initial T

0 2 4 6 8 10

Z =P/(pT)

1.75¢
1.50¢
1.25
1.00
0.75}
0.50+
0.25¢}
0.001

—-0.25¢

Z=p/(pT)

U fluid, To = 1.0, p = 0.1

—— Compressibility
---- Average Z over last steps
0 4 6 8 10

More involved approaches: thermostat degrees of freedom (Berendsen, Nose-Hoover, ...)
final project idea(?)

Lennard-Jones fluid: C4++/GPU implementation

System parame
N= 100

T = 0710
o= 0844
eeeeeeeeeeee
o

e |
L) P\ <
CReesm

Microcanonical © Canonical
Bound: ditions
/ Calculate on
NN V7
\\ // I,\\ [-Ye:T] GPU (CUDA)
\
Qo s ! \ Simulation parameters
‘ . ‘ " ' - =
! J Tters per frame = 10
15 SN
’ Pause

0 0.8 16 X
/sigma
© 2013-2021 V. Vovchenko
0.8
" particle
re
07
0.6
0.5
Zo4
0.3
0.2
01
00 15 3 4.5
-
mplementation:
o

Velocity Verlet integration scheme implemented on CUDA-GPU (x100-200 speed-up*)

E

6 75
v

NVIDIA.
open source: https://github.com/vivovch/lennard-jones-cuda CUDA

https://github.com/vlvovch/lennard-jones-cuda

